Imbalanced data classification using support vector machine based on simulated annealing for enhancing penalty parameter
DOI:
https://doi.org/10.21533/pen.v9.i2.804Abstract
For pattern cataloguing and regression issues, the support vector machine (SVM) is an eminent and computationally prevailing machine learning method. It’s been effectively addressing several concrete issues across an extensive gamut of domains. SVM possesses a key aspect called penalty factor C. The choice of these aspects has a substantial impact on the classification precision of SVM as unsuitable parameter settings might drive substandard classification outcomes. Penalty factor C is required to achieve an adequate trade-off between classification errors and generalisation performance. Hence, formulating an SVM model having appropriate performance requires parameter optimisation. The simulated annealing (SA) algorithm is employed to formulate a hybrid method for evaluating SVM parameters. Additionally, the intent is to enhance system efficacy to obtain the optimal penalty parameter and balance classification performance at the same time. Our experiments with many UCI datasets indicate that the recommended technique could attain enhanced classification precision.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.