Highly sensitive fiber-optic temperature sensor based on tapered no-core fiber for biomedical and biomechanical applications
DOI:
https://doi.org/10.21533/pen.v9.i2.781Abstract
A low-cost, easy to fabricate real-time temperature sensation device built on an In-Line Mach–Zehnder interferometer basis was manufactured by fusing a segment of no-core fiber amongst two fibers of single-mode. Two different structures, tapered no-core fiber, and untapered no-core fiber both retaining acrylate polymer coating were investigated. The 3 cm length tapered no-core fiber sensor showed the highest sensitivities of ∼ −1.943 nm ◦C−1 and ∼ −1.954 nm ◦C−1 for two different dips respectively. The sensor exhibited high linearity with a very good resolution of 0.0102 ◦C. making the most of the high coefficient of thermal expansion, thermo-optic properties of the acrylate polymer, and the tapering effect, the sensor could be utilized in many temperatures observing applications like biochemical labs, biomechanical studies, and bio-sensing analyses.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.