K-Means clustering of optimized wireless network sensor using genetic algorithm
DOI:
https://doi.org/10.21533/pen.v10.i3.662Abstract
Wireless sensor network is one of the main technology trends that used in several different applications for collecting, processing, and distributing a vast range of data. It becomes an essential core technology for many applications related to sense surrounding environment. In this paper, a two-dimensional WSN scheme was utilized for obtaining various WSN models that intended to be optimized by genetic algorithm for achieving optimized WSN models. Such optimized WSN models might contain two cluster heads that are close to each other, in which the distance between them included in the sensing range, and this demonstrates the presence of a redundant number of cluster heads. This problem exceeded by reapplying the clustering of all sensors found in the WSN model. The distance measure was used to detect handled problem, while K-means clustering was used to redistributing sensors around the alternative cluster head. The result was extremely encouraging in rearranging the dispersion of sensors in the detecting region with a conservative method of modest number of cluster heads that acknowledge the association for all sensors nearby.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.




