A model to enhance the atrial fibrillations’ risk detection using deep learning
DOI:
https://doi.org/10.21533/pen.v10.i3.650Abstract
Atrial fibrillation (AF) is a complex arrhythmia linked to a variety of common cardiovascular illnesses and conventional cardiovascular risk factors. Although awareness and improved detection of AF have improved over the last decade as the incidence and prevalence of AF has increased, current trends in using machine learning approaches to diagnose AF are still lacking in precision. To determine the true nature of the Electrocardiography (ECG) signal segments, a Convolutional Neural Network (CNN) model was employed to discover hidden information. Fully Connected (FC) layers were then utilized to categorize the ECG data segments as normal or abnormal. The suggested algorithm's findings were compared to state-of-the-art arrhythmia identification algorithms in the literature for the MIT-BIH ECG database. The methodology proved not only to yield high classification performance (98.5%) but also low processing computational advantage where the CNN was the most accurate algorithm used for atrial fibrillation detection hence. To conclude the findings of the research, a model was prepared to test the accuracy of the most common ML algorithms used for AF detection. After comparing the results of the experiment, it was clear that CNN algorithm is the best approach compared to Support Vector Machine (SVM) and K-Nearest Neighbor (KNN).
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.




