Proposed neural intrusion detection system to detect denial of service attacks in MANETs
DOI:
https://doi.org/10.21533/pen.v10.i3.644Abstract
MANTs are groups of mobiles hosts that arrange themselves into a grid lacking some preexist organization where the active network environment makes it simple in danger by an attacker. A node leaves out, and another node enters in the network, making it easy to penetration. This paper aims to design a new method of intrusion detection in the MANET and avoiding Denial of Service (DoS) basis on the neural networks and Zone Sampling-Based Traceback algorithm (ZSBT). There are several restrictions in outdating intrusion detection, such as time-intense, regular informing, non-adaptive, accuracy, and suppleness. Therefore, a novel intrusion detection system is stimulated by Artificial Neural Network and ZSBT algorithm using a simulated MANET. Using KDD cup 99 as a dataset, the experiments demonstrate that the model could can detect DoS effectively.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.




