Design of automatic speech recognition in noisy environments enhancement and modification
DOI:
https://doi.org/10.21533/pen.v10.i1.519Abstract
Recurrent neural networks (RNN) and feed-forward multi-layer perceptron’s have been proposed for determining the absence and presence of speech in continuous voice signals when there is a variety of background noise levels present. The Aurora2 and Aurora3 were used to conduct detailed performance evaluations on vocal activity detection. When a Recurrent neural network feeds on automatic speech recognition particular features and acoustic features, the best outcomes can be achieved, according to this study. Aurora2 and the French, Romanian and Norway portions of the Aurora3 corpus is also proposed for detailed studies of ASR. When noise presence probability is utilized to change for encoding speech, phone subsequent probabilities are employed; the WER is reduced by 10.3 percent.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.