Enhancing child safety with accurate fingerprint identification using deep learning technology
DOI:
https://doi.org/10.21533/pen.v11.i3.145Abstract
Utilizing deep learning algorithms to differentiate the fingerprints of children can greatly enhance their safety. This advanced technology enables precise identification of individual children, facilitating improved monitoring and tracking of their activities and movements. This can effectively prevent abductions and other forms of harm, while also providing a valuable resource for law enforcement and other organizations responsible for safeguarding children. Furthermore, the use of deep learning algorithms minimizes the potential for errors and enhances the overall accuracy of fingerprint recognition. Overall, implementing this technology has immense potential to significantly improve the safety of children in various settings. Our experiments have demonstrated that deep learning significantly enhances the accuracy of fingerprint recognition for children. The model accu-rately classified fingerprints with an overall accuracy rate of 93%, surpassing traditional fingerprint recognition techniques by a significant margin. Additionally, it correctly identified individual children's fingerprints with an accuracy rate of 89%, showcasing its ability to distinguish between different sets of fingerprints belonging to different children.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.




