Experimental investigation and statistical modelling for assessing the sliding wear of Futilized Filament Fabrication (FFF) fabricated parts
DOI:
https://doi.org/10.21533/pen.v11.i2.116Abstract
A significant historical enabler for the improvement of industrial goods has been the characterization of novel materials. For example, a large variety of polymeric materials are readily accessible to manufacture the appropriate items depending on the production method. Due to its capacity to produce components with complicated geometries without the need for tools or a human interface, fused filament fabrication (FFF) is acquiring a unique edge in the industrial sector. By adjusting process parameters at the right values, the qualities of FFF-built items may be enhanced since they rely heavily on these factors. Increasing the service life of functioning components requires taking wear resistance into account. Because of this, the current work concentrates on a thorough investigation to comprehend the impact of 3 crucial elements, including layer thickness, printing speed, also infill density, infill density, and the sliding wear of test specimens. A mechanism of wear is explained by utilizing microphotographs.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.




