Bayesian estimation and variables selection for binary composite quantile regression
DOI:
https://doi.org/10.21533/pen.v8.i2.1136Abstract
In this paper, Bayesian hierarchical model proposed to estimate the coefficients of the composite quantile regression model when the response variable is binary. For selecting variables in binary composite quantile regression lasso the adaptive lasso penalty is derived in a Bayesian framework. Simulation study and real data examples are used to examine the performance of the proposed methods compared to the other existing methods. We conclude that the proposed method is comparable.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.




