Segmenting video frame images using genetic algorithms
DOI:
https://doi.org/10.21533/pen.v8.i2.1135Abstract
Image segmentation plays an important role in computer vision. It is a process that partitions a digital image into several meaningful regions, by identifying regions of an image that have common properties while separating regions that are dissimilar. The image segmentation problem is posed as an optimization procedure. In this thesis, an optimization approach based on genetic algorithm is introduced for finding optimal image segmentation. The design and implementation of genetic algorithm image segment or (GSAI) system are described. GSAI system employs finds optimal value using genetic operators "crossover operator and mutation operator". The different proposed / implementation segmentation methods of the GSAI system were tested using Gray image are taken from one films and with size 352x240 pixels for video frames images of In this is work focused on genetic algorithm coefficients which affect in direct and active way in the work of GA to study and analysis dependable video images which are taken from video clips after partitioning to multiple frames.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.




