The determination of ground granulated concrete compressive strength-based machine learning models
DOI:
https://doi.org/10.21533/pen.v8.i2.1126Abstract
The advancement of machine learning (ML) models has received remarkable attention by several science and engineering applications. Within the material engineering, ML models are usually utilized for building an expert system for supporting material design and attaining an optimal formulation material sustainability and maintenance. The current study is conducted on the base of the utilization of ML models for modeling compressive strength (Cs) of ground granulated blast furnace slag concrete (GGBFSC). Random Forest (RF) model is developed for this purpose. The predictive model is constructed based on multiple correlated properties for the concrete material including coarse aggregate (CA), curing temperature (T), GGBFSC to total binder ratio (GGBFSC/B), water to binder ratio (w/b), water content (W), fine aggregate (FA), superplasticizer (SP). A total of 268 experimental dataset are gather form the open-source previous published researches, are used to build the predictive model. For the verification purpose, a predominant ML model called support vector machine (SVM) is developed. The efficiency of the proposed predictive and the benchmark models is evaluated using statistical formulations and graphical presentation. Based on the attained prediction accuracy, RF model demonstrated an excellent performance for predicting the Cs using limited input parameters. Overall, the proposed methodology showed an exceptional predictive model that can be utilized for modeling compressive strength of GGBFSC.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.




