Nonlinear 3D finite element simulation of CFST columns under different confined concrete material’s models

Hawra Mohamedali M.taher

Abstract


Nowadays everything expands rapidly and growth with time, including the service structures to accommodate an acceptable level of service to the community. The concrete filled steel tubes is a new technique that provides some features compared with the normal concrete columns.in this study three concrete compressive stress strain models behavior have been studied to validate the adopted experimental work and find the best model that can simulate the actual data, using nonlinear finite element analysis in Abaqus. Then, three type of concrete strength where considered (C25, C40, and C60) with three Diameter of tube thickness ratios are; 165,100, and 50 for each concrete class type. Tests results have shown that the confinement effect in high strength concrete was higher than other types of concrete types, in addition to a noticeable enhancement in the ductility behavior. The adopted model was able to capture concrete compressive behavior accurately, for all curve’s stages.

Full Text:

PDF

References


P. Li, T. Zhang, and C. Wang, "Behavior of Concrete-Filled Steel Tube Columns Subjected to Axial

Compression," Advances in Materials Science and Engineering, vol. 2018, pp. 1-15, 08/26 2018.

N. E. Shanmugam and B. J. J. o. c. s. r. Lakshmi, "State of the art report on steel–concrete composite

columns," vol. 57, no. 10, pp. 1041-1080, 2001.

E.-T. Lee, B. Yun, H. Shim, K. Chang, and G. C. J. J. o. s. e. Lee, "Torsional behavior of concrete-

filled circular steel tube columns," vol. 135, no. 10, pp. 1250-1258, 2009.

L.-H. Han, W. Li, and R. J. J. o. C. S. R. Bjorhovde, "Developments and advanced applications of

concrete-filled steel tubular (CFST) structures: Members," vol. 100, pp. 211-228, 2014.

L.-H. Han, S.-H. He, and F.-Y. J. J. o. C. S. R. Liao, "Performance and calculations of concrete filled

steel tubes (CFST) under axial tension," vol. 67, no. 11, pp. 1699-1709, 2011.

Z. Ou, B. Chen, K. H. Hsieh, M. W. Halling, and P. J. J. J. o. S. E. Barr, "Experimental and analytical

investigation of concrete filled steel tubular columns," vol. 137, no. 6, pp. 635-645, 2010.

T. Perea, R. T. Leon, J. F. Hajjar, and M. D. J. J. o. S. E. Denavit, "Full-scale tests of slender

concrete-filled tubes: axial behavior," vol. 139, no. 7, pp. 1249-1262, 2012.

L.-H. Han, H. Lu, G.-H. Yao, and F.-Y. J. J. o. C. S. R. Liao, "Further study on the flexural behaviour

of concrete-filled steel tubes," vol. 62, no. 6, pp. 554-565, 2006.

A. Committee and I. O. f. Standardization, "Building code requirements for structural concrete (ACI

-08) and commentary," 2008: American Concrete Institute.

T. V. Galambos and M. J. E. J. Ravindra, AISC, "Load and resistance factor design," vol. 18, no. 3, pp. 78-84, 1981.

E. C. f. S. J. p. -1-1, "Eurocode 4: Design of composite steel and concrete structures—Part 1.1:

General rules and rules for buildings," ed, 2004.

M. J. T.-W. S. Dundu, "Compressive strength of circular concrete filled steel tube columns," vol. 56, pp. 62-70, 2012.

K. Susantha, H. Ge, and T. J. J. o. E. E. Usami, "A capacity prediction procedure for concrete-filled

steel columns," vol. 5, no. 04, pp. 483-520, 2001.

M. J. S. Johansson and C. Structures, "The efficiency of passive confinement in CFT columns," vol.2, no. 5, pp. 379-396, 2002.

K. Sakino, H. Nakahara, S. Morino, and I. J. J. o. S. E. Nishiyama, "Behavior of centrally loaded

concrete-filled steel-tube short columns," vol. 130, no. 2, pp. 180-188, 2004.

M. Yu, X. Zha, J. Ye, and Y. J. E. s. Li, "A unified formulation for circle and polygon concrete-filled

steel tube columns under axial compression," vol. 49, pp. 1-10, 2013.

S. P. J. J. o. s. E. Schneider, "Axially loaded concrete-filled steel tubes," vol. 124, no. 10, pp. 1125-1138, 1998.

S. Tokgoz and C. J. T.-W. S. Dundar, "Experimental study on steel tubular columns in-filled with

plain and steel fiber reinforced concrete," vol. 48, no. 6, pp. 414-422, 2010.

Q. Q. Liang and S. J. J. o. C. S. R. Fragomeni, "Nonlinear analysis of circular concrete-filled steel

tubular short columns under axial loading," vol. 65, no. 12, pp. 2186-2196, 2009.

J. B. Mander, M. J. Priestley, and R. J. J. o. s. e. Park, "Theoretical stress-strain model for confined

concrete," vol. 114, no. 8, pp. 1804-1826, 1988.

Q. Q. J. J. o. C. S. R. Liang, "Strength and ductility of high strength concrete-filled steel tubular

beam–columns," vol. 65, no. 3, pp. 687-698, 2009.

Z. Tao, Z.-B. Wang, and Q. J. J. o. C. S. R. Yu, "Finite element modelling of concrete-filled steel stubcolumns under axial compression," vol. 89, pp. 121-131, 2013.

Q. Yu, Z. Tao, and Y.-X. J. T.-W. S. Wu, "Experimental behaviour of high performance concrete-

filled steel tubular columns," vol. 46, no. 4, pp. 362-370, 2008.

A. J. A. M. Code, American Concrete Institute, Detroit, Mechigan, "Building code requirements for

structural concrete and commentary," 2011.

V. K. Papanikolaou, A. J. J. I. J. o. S. Kappos, and Structures, "Confinement-sensitive plasticity

constitutive model for concrete in triaxial compression," vol. 44, no. 21, pp. 7021-7048, 2007.

T. Yu, J. Teng, Y. Wong, and S. J. E. S. Dong, "Finite element modeling of confined concrete-I:

Drucker–Prager type plasticity model," vol. 32, no. 3, pp. 665-679, 2010.

T. Yu, J. Teng, Y. Wong, and S. J. E. s. Dong, "Finite element modeling of confined concrete-II:

Plastic-damage model," vol. 32, no. 3, pp. 680-691, 2010.

C.-F. M. J. B. d. i. Code, "Comite euro-international du beton," vol. 213, p. 214, 1993.




DOI: http://dx.doi.org/10.21533/pen.v8i1.999

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 israa albaeazanchi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License