Recent developments of metallic implants for biomedical applications

Fehim Findik

Abstract


Medical implants have undoubtedly made an indelible mark on our world during the last century. More than 100 million humans carry at least one major internal medical device. The prosthesis industry has topped 50 billion US$ in annual sales, with approximately 150 universities throughout the world proposing an undergraduate program in bioengineering or biomedical engineering. Despite that, however, most medical devices have been constructed using a significantly restricted number of conventional metallic, ceramic, polymeric, and composite biomaterials. In this study, recent developments of metallic implants are summarized for biomedical applications. To do this, first desired properties for biomaterials are defined. Then, types of metallic biomaterials are classified as stainless steel, Mg, Co, Ti, nobble and biodegradable ones. After that, surface modifications are defined for corrugation, topographies and chemical modification. Finally, future perspective is outlined for the sake of development new materials as well as production point of view.

Keywords


Implant; biomedical; biomaterials; application, metallic alloys; surface modification

Full Text:

PDF

References


Shi H, Tsai W-B, Garrison MD, S. Ferrari and Ratner BD, Template imprinted nanostructured surfaces for protein recognition, Nature, 15 April 1999, Vol. 398, No. 6728, pp. 593-597.

Senior K. Artificial implants: making the marriage work, The Lancet, 14th August 1999, Vol. 354, No. 9178.

Lawrence, K.J. Anisotropy of Young’s modulus of bone. Nature 1980, 283, 106–107.

Black, J.; Hastings, G.W. Handbook of Biomaterials Properties; Chapman and Hall: London, UK, 1998. 5. Alvarado, J.; Maldonado, R.; Marxuach, J.; Otero, R. Biomechanics of hip and knee prostheses. Appl. Eng. Mechan. Med. GED–Univ. Puerto Rico Mayaguez 2003, 6, 22.

Hallab, N.J.; Anderson, S.; Stafford, T.; Glant, T.; Jacobs, J.J. Lymphocyte responses in patients with total hip arthroplasty. J. Orthop. Res. 2005, 23, 384–391.

Branemark, P.I. Osseointegration and its experimental background. J. Pros. Dent. 1983, 50, 399‒410.

Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Progr. Mater. Sci. 2009, 54, 397–425.

Viceconti, M.; Muccini, R.; Bernakiewicz, M.; Baleani, M.; Cristofolini, L. Large-sliding contact elements accurately predict levels of bone–implant micromotion relevant to osseointegration. J. Biomech. 2000, 33, 1611–1618.

Wennerberg, A.; Albrektsson, T.; Jimbo, R. Implant Surfaces and Their Biological and Clinical Impact, 1st ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2015; p. 168.

Barfeie, A.; Wilson, J.; Rees, J. Implant surface characteristics and their effect on osseointegration. Br. Dental J. 2015, 218, 1–9.

Teoh, S.H. Fatigue of biomaterials: A review. Int. J. Fatigue 2000, 22, 825‒837.

Park, J.; Lakes, R.S. Biomaterials an Introduction, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007.

Niinomi, M. Metallic biomaterials. J. Artif. Organs 2008, 11, 105–110.

Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 2002, 33, 477‒486.

Rokkum M, Bye K, Hetland KR, et al. Stem fracture with the exeter prosthesis 3 of 27 hips followed for 10 years. Acta Orthop Scand. 1995; 66:435–439.

Davis JR. Handbook of materials for medical devices. 1st ed. Geauga: ASM international; 2003. Chapter 3, Metallic materials; p. 22–30.

Piehler HR. Pluralistic medical device risk management: standards, regulation, and litigation. In: Fraker AC, Griffin CD, editors. Corrosion and degradation of implant materials: second symposium. Pennsylvania: ASTM International; 1985. p. 1–10.

Zhang F, Kang ET, Neoh KG, et al. Surface modification of stainless steel by grafting of poly (ethylene glycol) for reduction in protein adsorption. Biomaterials 2001; 22:1541–1548.

Kang CK, Lee YS. The surface modification of stainless steel and the correlation between the surface properties and protein adsorption. J Mater Sci Mater Med. 2007; 18:1389–1398.

Thomann UI, Uggowitzer PJ. Wear–corrosion behavior of biocompatible austenitic stainless steels. Wear 2000; 239:48–58.

Liu DM, Yang Q, Troczynski T. Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 2002; 23:691–698.

Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R. 2015; 87:1–57.

Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010; 6:1680– 1692.

Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006; 27:1728–1734.

Hermawan H, Dube D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010; 6:1693–1697.

Rude RK. Magnesium deficiency: a cause of heterogenous disease in humans. J Bone Miner Res. 1998; 13:749–758.

Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys – a review. Acta Biomater. 2012; 8:2442–2455.

Eliezer D, Aghion E, Froes FS. Magnesium science, technology and applications. Adv Perform Mater. 1998; 5:201–212.

Liu N, Huang WM. DSC study on temperature memory effect of NiTi shape memory alloy. Trans Nonferrous Met Soc China. 2006; 16:s37–s41.

Wang H, Estrin Y, Zuberova Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater Lett. 2008; 62:2476–2479.

Gray JE, Luan B. Protective coatings on magnesium and its alloys – a critical review. J alloys compd. 2002; 336:88–113.

Razavi M, Fathi M, Savabi O, et al. Controlling the degradation rate of bioactive magnesium implants by electrophoretic deposition of akermanite coating. Ceram Int. 2014; 40:3865–3872.

Chen XB, Nisbet DR, Li RW, et al. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating. Acta Biomater. 2014; 10:1463–1474.

Kannan MB. Enhancing the performance of calcium phosphate coating on magnesium alloy for bioimplant applications. Mater Lett. 2012; 76:109–112.

Lu Y, Tan L, Xiang H, et al. Fabrication and characterization of Ca–Mg–P containing coating on pure magnesium. J Mater Sci Technol. 2012; 28:636– 641.

Lu Y, Tan L, Zhang B, et al. Synthesis and characterization of Ca–Sr–P coating on pure magnesium for biomedical application. Ceram Int. 2014; 40:4559–4565.

Mahapatro A, Matos Negron TD, Gomes AS. Nanostructured self-assembled monolayers on magnesium for improved biological performance. Mater Technol. 2016; 31:818–827

Ratner, J.B.B.D.; Hoffman, A.S.; Shoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine; Academic Press: Waltham, MA, USA, 1996; pp. 37–50.

Addison, O., Davenport, A. J., Newport, R. J., Kalra, S., Monir, M. et al. ( 2012 ) Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear? Journal of The Royal Society Interface, 7, 3161 – 4.

Cvijović-Alagić, I., Cvijović, Z., Mitrović, S., Panić , V. and Rakin, M. ( 2011 ) Wear and corrosion behavior of Ti-13Nb-13Zr and Ti-6Al-4V alloys in simulated physiological solution, Corrosion Science, 53, 796 – 808

Diomidis, N., Mischler, S., More, N. S. and Roy, M. ( 2012 ) Tribo- electrochemical characterization of metallic biomaterials for total joint replacement, Acta Biomaterialia, 8, 852 – 9.

More, N. S., Diomidis, N., Paul, S. N., Roy, M. and Mischler, S. ( 2011 ) Tribocorrosion behavior of β -titanium alloys in physiological solutions containing synovial components, Materials Science and Engineering: C, 31, 400 – 8.

Nakada, H., Numata, Y., Sakae, T., Okazaki, Y., Tanimoto, Y. et al. ( 2008 ) Comparison of bone mineral density and area of newly formed bone around Ti-15%Zr-4%Nb-4%Ta alloy and Ti-6%A1-4%V alloy implants, Journal of Hard Tissue Biology, 17, 99 – 108 .

Li, S. J., Yang, R., Li, S., Hao, Y. L., Cui, Y. Y. et al. ( 2004 ) Wear characteristics of Ti-NbTa-Zr and Ti-6Al-4V alloys for biomedical applications, Wear, 257, 869 – 76 .

Fukuda, A., Takemoto, M., Saito, T., Fujibayashi, S., Neo, M. et al. ( 2011 ) Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments, Acta Biomaterialia, 7, 1379 – 86 .

Niinomi, M. and Hattori, T. ( 2010 ) Effect of Young’s modulus in metallic implants on atrophy and bone remodeling. In: Sasano, T. and Suzuki, O. eds), Interface Oral Health Science 2009, Osaka, Japan, Springer Japan.

Minagar, S., Berndt, C. C., Wang, J., Ivanova, E. and Wen, C. ( 2012 ) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomaterialia, 8, 2875 – 88.

Niinomi, M. ( 2008 ) Mechanical biocompatibilities of titanium alloys for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, 1, 30 – 42.

Long, M. and Rack, H. J. ( 1998 ) Titanium alloys in total joint replacement: A materials science perspective, Biomaterials, 19, 1621 – 39.

Majumdar, P., Singh, S. B. and Chakraborty, M. ( 2011 ) The influence of heat treatment and role of boron on sliding wear behavior of type Ti-35Nb-7.2Zr-5.7Ta alloy in dry condition and in simulated body fluids, Journal of the Mechanical Behavior of Biomedical Materials, 4, 284 – 97.

Manhabosco, T. M., Tamborim, S. M., Dos Santos, C. B. and Müller, I. L. ( 2011 ) Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution, Corrosion Science, 53, 1786 – 93.

Martini, C., Ceschini, L., Casadei, B., Boromei, I. and Guion, J. B. ( 2011 ) Dry sliding behavior of hydrogenated amorphous carbon (a-C:H) coatings on Ti-6Al-4V, Wear, 271, 2025 – 36.

Lausmaa, J. ( 1996 ) Surface spectroscopic characterization of titanium implant materials, Journal of Electron Spectroscopy and Related Phenomena, 81, 343 – 61

Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Characterization of biomedical Ti-16Nb-(0–4)Sn alloys produced by Powder Injection Molding”, Vacuum, Vol. 142, August 2017, pp. 164-174.

Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Assessment of Ti–16Nb–xZr alloys produced via PIM for implant applications”, Journal of Thermal, Analysis and Calorimetry, Vol: 134, issue: 1, pp. 7-14, Oct. 2018.

Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Metallurgical properties and biomimetic HA deposition performance of Ti-Nb PIM alloys”, Journal of Alloys and Componds, Vol. 746, pp. 301-313, May 2018.

Yılmaz E, Gökçe A, Findik F, Gulsoy O, Iyibilgin O. “Mechanical properties And electrochemical behavior of porous Ti-Nb biomaterials”, J. of the Mechanical Behavior of Biomedical Materials”, Vol. 87, pp. 59-67, November 2018.

Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Powder Metallurgy Processing of Ti-Nb Based Biomedical Alloys”, Acta Physica Polonica A, Vol. 134, Issue 1, pp. 278-280, July 2018.

Mehl, C., Lang, B., Kappert, H. and Kern, M. ( 2011 ) Microstructure analysis of dental castings used in fixed dental prostheses: A simple method for quality control, Clinical Oral Investigations, 15, 383 – 91

Ucar, Y., Brantley, W. A., Johnston, W. M., Iijima, M., Han, D. S. and Dasgupta, T. ( 2011 ) Microstructure, elemental composition, hardness and crystal structure study of the interface between a noble implant component and cast noble alloys, The Journal of Prosthetic Dentistry, 106, 170 – 8.

Guo, W. H., Brantley, W. A., Clark, W. A.T., Monaghan, P. and Mills, M. J. ( 2003 ) Transmission electron microscopic investigation of a Pd-Ag-In-Sn dental alloy, Biomaterials, 24, 1705 – 12.

Ucar, Y., Brantley, W. A., Johnston, W. M. and Dasgupta, T. ( 2011 ) Mechanical properties, fracture surface characterization, and microstructural analysis of six noble dental casting alloys, The Journal of Prosthetic Dentistry, 105, 394 – 402.

Soares, A. C. and Cavalheiro, A. ( 2010 ) A review of amalgam and composite longevity of posterior restorations, Revista Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial, 51, 155 – 64.

Ye, X., Qian, H., Xu, P., Zhu, L., Longnecker, M. P. and Fu, H. ( 2009 ) Nephrotoxicity, neurotoxicity, and mercury exposure among children with and without dental amalgam fillings, International Journal of Hygiene and Environmental Health, 212, 378 – 86.

Clarkson, T. W. and Magos, L. ( 2006 ) The toxicology of mercury and its chemical compounds, Critical Reviews in Toxicology, 36, 609 – 62.

Scholtanus, J. D., Özcan, M. and Huysmans, M. C., ( 2009 ) Penetration of amalgam constituents into dentine, Journal of Dentistry, 37, 366 – 73.

Bates, M. N. ( 2006 ) Mercury amalgam dental fillings: An epidemiologic assessment, International Journal of Hygiene and Environmental Health, 209, 309 – 16.

Bellinger, D. C., Trachtenberg, F., Zhang, A., Tavares, M., Daniel, D. and Mckinlay, S. ( 2008 ) Dental amalgam and psychosocial status: The New England Children’s Amalgam Trial, Journal of Dental Research, 87, 470 – 4.

Shimizu, Y., Yamamoto, A., Mukai, T., Shirai, Y., Kano, M. et al. ( 2010 ) Medical application of magnesium and its alloys as degradable biomaterials. In: Sasano, T. and Suzuki, O. (eds), Interface Oral Health Science 2009, Osaka, Japan, Springer Japan.

Xin, Y., Hu, T. and Chu, P. K. ( 2011 ) In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review, Acta Biomaterialia , 7, 1452 – 9.

Waksman, R., Erbel, R., Di Mario, C., Bartunek, J., De Bruyne, B. et al. ( 2009 ) Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries, JACC: Cardiovascular Interventions, 2, 312 – 20.

Willbold, E., Kaya, A. A., Kaya, R. A., Beckmann, F. and Witte, F. ( 2011 ) Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site, Materials Science and Engineering: B, 176, 1835 – 40.

Pierson, D., Edick, J., Tauscher, A., Pokorney, E., Bowen, P. et al. ( 2012 ) A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B, 58 – 67.

Seitz, J. M., Eifler, R., Stahl, J., Kietzmann, M. and Bach, F. W. ( 2012 ) Characterization of MgNd 2 alloy for potential applications in bioresorbable implantable devices, Acta Biomaterialia, 8, 3852 – 64.

Findik F, Iyibilgin O et al. (2016) “Metal Alloy Stent Placed Into Vein And A New Method For Production of This Stent”, Turk Patent Institute, Record No: 2016 05339

Schwartz Zvi, Boyan BD. Underlying mechanisms at the bone-bomaterial interface. J Cell Biochem 1994; 56: 340-7.

Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials 1999; 20: 2311-2.

Buser D, Schenk RK et al. Influence of surface characteristics on bone integration of Ti implants J Biomed Mater Res 1991; 25: 889-902.

Gotfredsen K, Hjorting-Nansen E, Budtz-Jorgensen E. Clinical and radiographic evaluation of submerged and nonsubmerged implants in monkeys. In J Prosthodont 1990; 3: 4639.

Kieswetter K et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells J Biomed Mater Res 1996; 32: 55-63.

Wennerberg A, Hallgren C et al. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughness. Clin Oral Implants Res 1998; 9: 119.

Hannson S, orton M. The relation between surface roughness and interfacial shear strength for one-anchored implants. A mathematical model. J Biomech 1999; 32: 829-36.

Albrektsson T, Wennerberg A. Oral implant surfaces. Int J Prosth 2004; 17: 536-43.

Wennerberg A et al. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int J Oral Maxillo Implants 1997; 12: 486-94.

Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Biomedical porous Ti-16Nb-10Zr-(0-15)Ta alloys”, International Journal of Materials Research Vol: 110 Issue: 4 pp: 375-378 APR 2019

Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Influence of Zr addition on the corrosion behavior of biomedical PIM Ti-16Nb alloy in SBF”, International Journal of Materials Research Volume: 110 Issue: 4 Pages: 379-381 Published: APR

Yılmaz, E., Çakıroğlu, B., Gökçe, A., Findik, F., Gulsoy, H.O., Gulsoy, N., Mutlu, Ö., Özacar, M. “Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition”, Materials Science and Engineering C, Volume 101, August 2019, Pages 292-305

Landolt D, Chauvy PF, Zinger O. Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments. Electrochim Acta 2003; 48: 3185–201.

Anselme K, Bigerelle M, Noel B, Iost A, Hardouin P. Effect of grooved titanium substratum on human osteoblastic cell growth. J Biomed Mater Res 2002; 60: 529–40.

Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999; 20: 573–88.




DOI: http://dx.doi.org/10.21533/pen.v8i1.988

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Fehim Findik

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License