Signal perception and transduction in plants

Abdul Razaque Memon, Camil Durakovic

Abstract


Plants are sessile organisms and are not able to move away from adverse environmental conditions and must response to an array of environmental and developmental cues. They heavily rely on high sensitivity detection and adaptation mechanisms to environmental perturbations. Signal transduction, the means whereby cells construct response to a signal, is a recently defined focus of research in plant biology. Over the past decade our understanding of plant signaling pathways has increased greatly, in part due to the use of molecular genetics and biochemical tools in model plants for example Arabidopsis thaliana and Medicago truncatula. This has assisted us in the identification of components of many signal transduction pathways in diverse physiological systems for example hormonal, developmental and environmental signal transduction pathways and cross-talk between them.During the last 15 years the number of known plant hormones has grown from five to at least ten. Furthermore, many of the proteins involved in plant hormone signaling pathways have been identified, including receptors for many of the major hormones. In addition, recent studies confirm that hormone signaling is integrated at several levels during plant growth and development.

In this review paper we have covered recent work in signaling pathway in plants especially how plants sense biotic and abiotic stresses and the potential mechanisms by which different chemical molecules and their downstream signaling components modulates stress tolerance.


Full Text:

PDF

References


Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling, The Plant cell. 15, 63-78.

Koyama, T., Mitsuda, N., Seki, M., Shinozaki, K. & Ohme-Takagi, M. (2010) TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis, The Plant cell. 22, 3574-88.

Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. & Shinozaki, K. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray, The Plant journal : for cell and molecular biology. 31, 279-92.

Yang, T. & Poovaiah, B. W. (2003) Calcium/calmodulin-mediated signal network in plants, Trends in plant science. 8, 505-12.

Basu, N., Arshad, N. & Visweswariah, S. S. (2010) Receptor guanylyl cyclase C (GC-C): regulation and signal transduction, Molecular and cellular biochemistry. 334, 67-80.

Veal, E. A., Day, A. M. & Morgan, B. A. (2007) Hydrogen Peroxide Sensing and Signaling, Molecular Cell. 26, 1-14.

Eyster, K. M. (2007) New paradigms in signal transduction, Biochemical pharmacology. 73, 1511-9.

Eyster, K. M. (2007) The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist, Advances in physiology education. 31, 5-16.

Memon, A. R., Hwang, S., Deshpande, N., Thompson, G. A., Jr. & Herrin, D. L. (1995) Novel aspects of the regulation of a cDNA (Arf1) from Chlamydomonas with high sequence identity to animal ADP-ribosylation factor 1, Plant molecular biology. 29, 567-77.

Apel, K. & Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annual review of plant biology. 55, 373-99.

Chen, M., Chory, J. & Fankhauser, C. (2004) Light signal transduction in higher plants, Annual review of genetics. 38, 87-117.

Peng, J. & Harberd, N. P. (2002) The role of GA-mediated signalling in the control of seed germination, Current opinion in plant biology. 5, 376-81.

Cullimore, J. V., Ranjeva, R. & Bono, J. J. (2001) Perception of lipo-chitooligosaccharidic Nod factors in legumes, Trends in plant science. 6, 24-30.

Takayama, S. & Sakagami, Y. (2002) Peptide signalling in plants, Current opinion in plant biology. 5, 382-7.

de Lucas, M., Daviere, J. M., Rodriguez-Falcon, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., Fankhauser, C., Blazquez, M. A., Titarenko, E. & Prat, S. (2008) A molecular framework for light and gibberellin control of cell elongation, Nature. 451, 480-4.

Catoira, R., Galera, C., de Billy, F., Penmetsa, R. V., Journet, E. P., Maillet, F., Rosenberg, C., Cook, D., Gough, C. & Denarie, J. (2000) Four genes of Medicago truncatula controlling components of a nod factor transduction pathway, The Plant cell. 12, 1647-66.

Brownlee, C. (2002) Role of the extracellular matrix in cell-cell signalling: paracrine paradigms, Curr Opin Plant Biol. 5, 396-401.

Brownlee, C. (2002) Plant K+ transport: not just an uphill struggle, Current biology : CB. 12, R402-4.

Jones, A. M. & Assmann, S. M. (2004) Plants: the latest model system for G-protein research, EMBO reports. 5, 572-8.

Liu, N., Wu, S., Van Houten, J., Wang, Y., Ding, B., Fei, Z., Clarke, T. H., Reed, J. W. & van der Knaap, E. (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato, Journal of experimental botany. 65, 2507-20.

Wang, Z. Y. & Tobin, E. M. (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression, Cell. 93, 1207-1217.

Sugano, S., Andronis, C., Green, R. M., Wang, Z. Y. & Tobin, E. M. (1998) Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein, Proc Natl Acad Sci USA. 95, 11020-11025.

Gazzarrini, S. & McCourt, P. (2003) Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us, Annals of botany. 91, 605-12.

Mlotshwa, S., Voinnet, O., Mette, M. F., Matzke, M., Vaucheret, H., Ding, S. W., Pruss, G. & Vance, V. B. (2002) RNA silencing and the mobile silencing signal, The Plant cell. 14 Suppl, S289-301.

Voinnet, O. (2004) Shaping small RNAs in plants by gene duplication, Nature genetics. 36, 1245-6.

Memon, A. R., Meng, B. & Mullet, J. E. (1996) RNA-binding proteins of 37/38 kDa bind specifically to the barley chloroplast psbA 3'-end untranslated RNA, Plant molecular biology. 30, 1195-205.

Inui, M., Martello, G. & Piccolo, S. (2010) MicroRNA control of signal transduction, Nature reviews Molecular cell biology. 11, 252-63.

Yanovsky, M. J., Mazzella, M. A., Whitelam, G. C. & Casal, J. J. (2001) Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis, J Biol Rhythms. 16, 523-530.

Yanovsky, M. J. (2000) Phytochrome A resets the circadian clock and delays tuber formation under long days in potato, Plant J. 23, 223-232.

Yanovsky, M. J., Mazzella, M. A. & Casal, J. J. (2000) A quadruple photoreceptor mutant still keeps track of time, Curr Biol. 10, 1013-1015.

Yanovsky, M. J. & Kay, S. A. (2003) Living by the calendar: how plants know when to flower, Nat Rev Mol Cell Biol. 4, 265-276.

Doyle, M. R., Davis, S. J., Bastow, R. M., McWatters, H. G., Kozma-Bognar, L., Nagy, F., Millar, A. J. & Amasino, R. M. (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana, Nature. 419, 74-7.

Kircher, S. (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm, Plant Cell. 14, 1541-1555.

Kiyosue, T. & Wada, M. (2000) LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis, Plant J. 23, 807-815.

Kojima, S. (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions, Plant Cell Physiol. 43, 1096-1105.

Quail, P. H. (2002) Photosensory perception and signalling in plant cells: new paradigms?, Current opinion in cell biology. 14, 180-8.

Quail, P. H. (2002) Phytochrome photosensory signalling networks, Nature Rev Mol Cell Biol. 3, 85-93.

Smith, H. (2000) Phytochromes and light signal perception by plants[mdash]an emerging synthesis, Nature. 407, 585-591.

Hall, A., Kozma-Bognar, L., Toth, R., Nagy, F. & Millar, A. J. (2001) Conditional circadian regulation of PHYTOCHROME A gene expression, Plant Physiol. 127, 1808-1818.

Hardtke, C. S., Ckurshumova, W., Vidaurre, D. P., Singh, S. A., Stamatiou, G., Tiwari, S. B., Hagen, G., Guilfoyle, T. J. & Berleth, T. (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4, Development. 131, 1089-100.

Demura, T., Tashiro, G., Horiguchi, G., Kishimoto, N., Kubo, M., Matsuoka, N., Minami, A., Nagata-Hiwatashi, M., Nakamura, K., Okamura, Y., Sassa, N., Suzuki, S., Yazaki, J., Kikuchi, S. & Fukuda, H. (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells, Proceedings of the National Academy of Sciences of the United States of America. 99, 15794-9.

Nambara, E., Suzuki, M., Abrams, S., McCarty, D. R., Kamiya, Y. & McCourt, P. (2002) A screen for genes that function in abscisic acid signaling in Arabidopsis thaliana, Genetics. 161, 1247-55.

Suzuki, G., Yanagawa, Y., Kwok, S. F., Matsui, M. & Deng, X. W. (2002) Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis, Genes & development. 16, 554-9.

Makino, S., Matsushika, A., Kojima, M., Yamashino, T. & Mizuno, T. (2002) The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants, Plant Cell Physiol. 43, 58-69.

Hardtke, C. S. & Deng, X. W. (2000) The cell biology of the COP/DET/FUS proteins. Regulating proteolysis in photomorphogenesis and beyond?, Plant physiology. 124, 1548-57.

Hardtke, C. S., Gohda, K., Osterlund, M. T., Oyama, T., Okada, K. & Deng, X. W. (2000) HY5 stability and activity in arabidopsis is regulated by phosphorylation in its COP1 binding domain, The EMBO journal. 19, 4997-5006.

Fankhauser, C. & Chory, J. (1999) Light receptor kinases in plants!, Current biology : CB. 9, R123-6.

Santner, A. & Estelle, M. (2009) Recent advances and emerging trends in plant hormone signalling, Nature. 459, 1071-8.

Albrecht, C., Boutrot, F., Segonzac, C., Schwessinger, B., Gimenez-Ibanez, S., Chinchilla, D., Rathjen, J. P., de Vries, S. C. & Zipfel, C. (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1, Proceedings of the National Academy of Sciences of the United States of America. 109, 303-8.

Boisson-Dernier, A., Kessler, S. A. & Grossniklaus, U. (2011) The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals, Journal of experimental botany. 62, 1581-91.

Gish, L. A. & Clark, S. E. (2011) The RLK/Pelle family of kinases, The Plant journal : for cell and molecular biology. 66, 117-27.

Fontes, E. P., Santos, A. A., Luz, D. F., Waclawovsky, A. J. & Chory, J. (2004) The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity, Genes & development. 18, 2545-56.

Monaghan, J., Matschi, S., Shorinola, O., Rovenich, H., Matei, A., Segonzac, C., Malinovsky, F. G., Rathjen, J. P., MacLean, D., Romeis, T. &Zipfel, C. (2014) The Calcium-Dependent Protein Kinase CPK28 Buffers Plant Immunity and Regulates BIK1 Turnover, Cell host & microbe. 16, 605-615.

Monaghan, J. & Zipfel, C. (2012) Plant pattern recognition receptor complexes at the plasma membrane, Current opinion in plant biology. 15, 349-57.

Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L. & He, P. (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity, Proceedings of the National Academy of Sciences of the United States of America. 107, 496-501.

Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky, F. G., Tor, M., de Vries, S. & Zipfel, C. (2011) The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens, The Plant cell. 23, 2440-55.

She, J., Han, Z., Kim, T. W., Wang, J., Cheng, W., Chang, J., Shi, S., Wang, J., Yang, M., Wang, Z. Y. & Chai, J. (2011) Structural insight into brassinosteroid perception by BRI1, Nature. 474, 472-6.

Terpstra, I. R., Snoek, L. B., Keurentjes, J. J., Peeters, A. J. & van den Ackerveken, G. (2010) Regulatory network identification by genetical genomics: signaling downstream of the Arabidopsis receptor-like kinase ERECTA, Plant physiology. 154, 1067-78.

Nimchuk, Z. L., Tarr, P. T., Ohno, C., Qu, X. & Meyerowitz, E. M. (2011) Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase, Current biology : CB. 21, 345-52.

Gubert, C. M. & Liljegren, S. J. (2014) HAESA and HAESA-LIKE2 activate organ abscission downstream of NEVERSHED and EVERSHED in Arabidopsis flowers, Plant signaling & behavior. 9.

Chen, X., Chern, M., Canlas, P. E., Ruan, D., Jiang, C. & Ronald, P. C. (2010) An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity, Proceedings of the National Academy of Sciences of the United States of America. 107, 8029-34.

Eitas, T. K., Nimchuk, Z. L. & Dangl, J. L. (2008) Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB, Proceedings of the National Academy of Sciences of the United States of America. 105, 6475-80.

Eitas, T. K. & Dangl, J. L. (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways, Current opinion in plant biology. 13, 472-7.

Gao, Z., Chung, E. H., Eitas, T. K. & Dangl, J. L. (2011) Plant intracellular innate immune receptor Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) is activated at, and functions on, the plasma membrane, Proceedings of the National Academy of Sciences of the United States of America. 108, 7619-24.

Azuma, M. (2010) Role of the glucocorticoid-induced TNFR-related protein (GITR)-GITR ligand pathway in innate and adaptive immunity, Critical reviews in immunology. 30, 547-57.

Placke, T., Kopp, H. G. & Salih, H. R. (2010) Glucocorticoid-induced TNFR-related (GITR) protein and its ligand in antitumor immunity: functional role and therapeutic modulation, Clinical & developmental immunology. 2010, 239083.

Liu, X. L., Covington, M. F., Fankhauser, C., Chory, J. & Wagner, D. R. (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway, Plant Cell. 13, 1293-1304.

Meyer, M. R., Shah, S. & Rao, A. G. (2013) Insights into molecular interactions between the juxtamembrane and kinase subdomains of the Arabidopsis Crinkly-4 receptor-like kinase, Archives of biochemistry and biophysics. 535, 101-10.

Liu, J., Yu, J., McIntosh, L., Kende, H. & Zeevaart, J. A. (2001) Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering, Plant Physiol. 125, 1821-1830.

Brutus, A., Sicilia, F., Macone, A., Cervone, F. & De Lorenzo, G. (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides, Proceedings of the National Academy of Sciences of the United States of America. 107, 9452-7.

Wang, D., Pei, K., Fu, Y., Sun, Z., Li, S., Liu, H., Tang, K., Han, B. & Tao, Y. (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa), Gene. 394, 13-24.

Wang, X. (1999) The role of phospholipase D in signaling cascades, Plant physiology. 120, 645-52.

Schumacher, K., Vafeados, D., McCarthy, M., Sze, H., Wilkins, T. & Chory, J. (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant growth and development, Genes & development. 13, 3259-70.

Becraft, P. W., Stinard, P. S. & McCarty, D. R. (1996) CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation, Science. 273, 1406-9.

Li, J. & Chory, J. (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction, Cell. 90, 929-38.

Schopfer, C. R., Nasrallah, M. E. & Nasrallah, J. B. (1999) The male determinant of self-incompatibility in Brassica, Science. 286, 1697-700.

He, Z., Wang, Z. Y., Li, J., Zhu, Q., Lamb, C., Ronald, P. & Chory, J. (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1, Science. 288, 2360-3.

He, Z. H., He, D. & Kohorn, B. D. (1998) Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response, The Plant journal : for cell and molecular biology. 14, 55-63.

Harvey, J., Palmer, M. J., Irving, A. J., Clarke, V. R. & Collingridge, G. L. (1996) NMDA receptor dependence of mGlu-mediated depression of synaptic transmission in the CA1 region of the rat hippocampus, British journal of pharmacology. 119, 1239-47.

Eckardt, N. A. (2002) Abscisic acid biosynthesis gene underscores the complexity of sugar, stress, and hormone interactions, The Plant cell. 14, 2645-9.

Eckardt, N. A. (2002) Good things come in threes: a trio of triple kinases essential for cell division in Arabidopsis, The Plant cell. 14, 965-7.

Eckardt, N. A. (2002) Foolish seedlings and DELLA regulators: the functions of rice SLR1 and Arabidopsis RGL1 in GA signal transduction, The Plant cell. 14, 1-5.

Feys, B. J., Moisan, L. J., Newman, M. A. & Parker, J. E. (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4, The EMBO journal. 20, 5400-11.

Rolland, F., Baena-Gonzalez, E. & Sheen, J. (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms, Annual review of plant biology. 57, 675-709.

Rolland, F., Moore, B. & Sheen, J. (2002) Sugar sensing and signaling in plants, The Plant cell. 14 Suppl, S185-205.

Koiwa, H., Barb, A. W., Xiong, L., Li, F., McCully, M. G., Lee, B. H., Sokolchik, I., Zhu, J., Gong, Z., Reddy, M., Sharkhuu, A., Manabe, Y., Yokoi, S., Zhu, J. K., Bressan, R. A. & Hasegawa, P. M. (2002) C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development, Proceedings of the National Academy of Sciences of the United States of America. 99, 10893-8.

Takahashi, Y., Shomura, A., Sasaki, T. & Yano, M. (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the [alpha]-subunit of protein kinase CK2, Proc Natl Acad Sci USA. 98, 7922-7927.

Scott, M. P. (2000) Development: the natural history of genes, Cell. 100, 27-40.

McCarty, D. R. & Chory, J. Conservation and Innovation in Plant Signaling Pathways, Cell. 103, 201-209.

Vogel, J. P., Schuerman, P., Woeste, K., Brandstatter, I. & Kieber, J. J. (1998) Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin, Genetics. 149, 417-27.

Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S. & Ecker, J. R. (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis, Science. 284, 2148-52.

Dharmasiri, N. & Estelle, M. (2004) Auxin signaling and regulated protein degradation, Trends in plant science. 9, 302-8.

Vandenbussche, F., Petrasek, J., Zadnikova, P., Hoyerova, K., Pesek, B., Raz, V., Swarup, R., Bennett, M., Zazimalova, E., Benkova, E. & Van Der Straeten, D. (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings, Development. 137, 597-606.

Guilfoyle, T. J. & Hagen, G. (2007) Auxin response factors, Current opinion in plant biology. 10, 453-60.

Liscum, E. & Reed, J. W. (2002) Genetics of Aux/IAA and ARF action in plant growth and development, Plant molecular biology. 49, 387-400.

Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins, Nature. 414, 271-6.

Ouellet, F., Overvoorde, P. J. & Theologis, A. (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype, The Plant cell. 13, 829-41.

Ramos, J. A., Zenser, N., Leyser, O. & Callis, J. (2001) Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent, The Plant cell. 13, 2349-60.

Benjamins, R., Quint, A., Weijers, D., Hooykaas, P. & Offringa, R. (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport, Development. 128, 4057-67.

Schlereth, A., Moller, B., Liu, W., Kientz, M., Flipse, J., Rademacher, E. H., Schmid, M., Jurgens, G. & Weijers, D. (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor, Nature. 464, 913-6.

Weijers, D. & Friml, J. (2009) SnapShot: Auxin signaling and transport, Cell. 136, 1172, 1172 e1.

Weijers, D. & Jurgens, G. (2005) Auxin and embryo axis formation: the ends in sight?, Current opinion in plant biology. 8, 32-7.

Weijers, D. & Jurgens, G. (2004) Funneling auxin action: specificity in signal transduction, Current opinion in plant biology. 7, 687-93.

Weijers, D., Schlereth, A., Ehrismann, J. S., Schwank, G., Kientz, M. & Jurgens, G. (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis, Developmental cell. 10, 265-70.

Gray, W. M., del Pozo, J. C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W. L., Yang, M., Ma, H. & Estelle, M. (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana, Genes & development. 13, 1678-91.

Nagpal, P., Ellis, C. M., Weber, H., Ploense, S. E., Barkawi, L. S., Guilfoyle, T. J., Hagen, G., Alonso, J. M., Cohen, J. D., Farmer, E. E., Ecker, J. R. & Reed, J. W. (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation, Development. 132, 4107-18.

Nagpal, P., Walker, L. M., Young, J. C., Sonawala, A., Timpte, C., Estelle, M. & Reed, J. W. (2000) AXR2 encodes a member of the Aux/IAA protein family, Plant physiology. 123, 563-74.

Worley, C. K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A. & Callis, J. (2000) Degradation of Aux/IAA proteins is essential for normal auxin signalling, The Plant journal : for cell and molecular biology. 21, 553-62.

Dietrich, U., Hettmann, M., Maschke, M., Doerfler, A., Schwechheimer, K. & Forsting, M. (2001) Cerebral aspergillosis: comparison of radiological and neuropathologic findings in patients with bone marrow transplantation, European radiology. 11, 1242-9.

Tan, B. C., Schwartz, S. H., Zeevaart, J. A. & McCarty, D. R. (1997) Genetic control of abscisic acid biosynthesis in maize, Proceedings of the National Academy of Sciences of the United States of America. 94, 12235-40.

Allen, G. J., Chu, S. P., Harrington, C. L., Schumacher, K., Hoffmann, T., Tang, Y. Y., Grill, E. & Schroeder, J. I. (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements, Nature. 411, 1053-7.

Garcia-Mata, C. & Lamattina, L. (2002) Nitric oxide and abscisic acid cross talk in guard cells, Plant physiology. 128, 790-2.

Neill, S. J., Desikan, R., Clarke, A. & Hancock, J. T. (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells, Plant physiology. 128, 13-6.

Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D. & Hancock, J. T. (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants, Journal of experimental botany. 53, 1237-47.

Klusener, B., Young, J. J., Murata, Y., Allen, G. J., Mori, I. C., Hugouvieux, V. & Schroeder, J. I. (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells, Plant physiology. 130, 2152-63.

Fedoroff, N. V. (2002) RNA-binding proteins in plants: the tip of an iceberg?, Current opinion in plant biology. 5, 452-9.

Wang, Z. Y. (1997) A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene, Plant Cell. 9, 491-507.

Lemichez, E., Wu, Y., Sanchez, J. P., Mettouchi, A., Mathur, J. & Chua, N. H. (2001) Inactivation of AtRac1 by abscisic acid is essential for stomatal closure, Genes & development. 15, 1808-16.

Zheng, Z. L., Nafisi, M., Tam, A., Li, H., Crowell, D. N., Chary, S. N., Schroeder, J. I., Shen, J. & Yang, Z. (2002) Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis, The Plant cell. 14, 2787-97.

Baxter-Burrell, A., Yang, Z., Springer, P. S. & Bailey-Serres, J. (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance, Science. 296, 2026-8.

Yang, Y., Cheng, P. & Liu, Y. (2002) Regulation of the Neurospora circadian clock by casein kinase II, Genes Dev. 16, 994-1006.

Yang, Z. (2002) Small GTPases: versatile signaling switches in plants, The Plant cell. 14 Suppl, S375-88.

Hoth, S., Morgante, M., Sanchez, J. P., Hanafey, M. K., Tingey, S. V. & Chua, N. H. (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant, Journal of cell science. 115, 4891-900.

Yang, C. J., Zhang, C., Lu, Y. N., Jin, J. Q. & Wang, X. L. (2011) The mechanisms of brassinosteroids' action: from signal transduction to plant development, Molecular plant. 4, 588-600.

Gonzalez-Garcia, M. P., Vilarrasa-Blasi, J., Zhiponova, M., Divol, F., Mora-Garcia, S., Russinova, E. & Cano-Delgado, A. I. (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots, Development. 138, 849-59.

Mussig, C. (2005) Brassinosteroid-promoted growth, Plant biology. 7, 110-7.

Mussig, C. & Altmann, T. (2003) Genomic Brassinosteroid Effects, Journal of plant growth regulation. 22, 313-324.

Mussig, C. & Altmann, T. (2001) Brassinosteroid signaling in plants, Trends in endocrinology and metabolism: TEM. 12, 398-402.

Mussig, C., Fischer, S. & Altmann, T. (2002) Brassinosteroid-regulated gene expression, Plant physiology. 129, 1241-51.

Mussig, C., Kauschmann, A., Clouse, S. D. & Altmann, T. (2000) The Arabidopsis PHD-finger protein SHL is required for proper development and fertility, Molecular & general genetics : MGG. 264, 363-70.

Gfeller, A., Liechti, R. & Farmer, E. E. (2010) Arabidopsis jasmonate signaling pathway, Science signaling. 3, cm4.

Mhamdi, A., Hager, J., Chaouch, S., Queval, G., Han, Y., Taconnat, L., Saindrenan, P., Gouia, H., Issakidis-Bourguet, E., Renou, J. P. & Noctor, G. (2010) Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways, Plant physiology. 153, 1144-60.

Rivas-San Vicente, M. & Plasencia, J. (2011) Salicylic acid beyond defence: its role in plant growth and development, Journal of experimental botany. 62, 3321-38.




DOI: http://dx.doi.org/10.21533/pen.v2i2.42

Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 Periodicals of Engineering and Natural Sciences (PEN)

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License