Optical Performance Assessment of a Handmade Prototype of Linear Fresnel Concentrator

Brayan Eduardo Tarazona Romero, Yecid Alfonso Muñoz Maldonado, Alvaro Campos Celador, Omar Lenguerke Pérez


This article aims to evaluate the optical behavior of a small handmade prototype of a linear Fresnel concentrator (LFC). The system was developed and tested as a water heater and steam generator at the Unidades Tecnológicas de Santander university, located in Bucaramanga, Colombia. Optical factors of the thermo-solar system studied were taken into account, such as concentration ratio and optical efficiency relationships. The Monte Carlo ray tracing method (MCRT) was carried out as an optical evaluation tool through the application of the free access software "SolTrace" and "TONATIUH" to later contrast the results obtained with both simulation tools. At the same time, the performance output from the simulations was compared with the optical performance of the experiments previously carried out with the device LFC, with the aim of evaluating the reliability and accuracy of the analysis developed through the MCRT methodology. The results obtained showed that the number of reflective mirrors or area of reflection has a direct impact on the optical efficiency of the prototype, where it is evidenced that there is a higher optical efficiency and a higher CR when the reflection area is larger. Similarly, direct solar radiation (DNI) has the same trend, showing that higher levels of direct solar radiation (DNI) increase optical efficiency. Finally, it was observed that the variation in the number of rays used in the simulations (10,000,000 and 5,000,000) does not influence the optical performance of the device.


Optical Performance, Linear Fresnel Reflector, Ray Tracing, Solar Collectors, Solar Concentrators

Full Text:



Z. Said, M. Ghodbane, A. A. Hachicha, y B. Boumeddane, “Optical performance assessment of a small experimental prototype of linear Fresnel reflector”, Case Studies in Thermal Engineering, vol. 16, p. 100541, dic. 2019, doi: 10.1016/j.csite.2019.100541.

K. Lovegrove y W. S. Csiro, “1 - Introduction to concentrating solar power (CSP) technology”, en Concentrating Solar Power Technology, K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2012, pp. 3–15. doi: 10.1533/9780857096173.1.3.

P. Heller, “1 - Introduction to CSP systems and performance”, en The Performance of Concentrated Solar Power (CSP) Systems, P. Heller, Ed. Woodhead Publishing, 2017, pp. 1–29. doi: 10.1016/B978-0-08-100447-0.00001-8.

R. Pitz-Paal, “19 - Concentrating Solar Power”, en Future Energy (Third Edition), T. M. Letcher, Ed. Elsevier, 2020, pp. 413–430. doi: 10.1016/B978-0-08-102886-5.00019-0.

K. Lovegrove y J. Pye, “2 - Fundamental principles of concentrating solar power (CSP) systems”, en Concentrating Solar Power Technology, K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2012, pp. 16–67. doi: 10.1533/9780857096173.1.16.

W. Van Sark y B. Corona, “Chapter 12 - Concentrating solar power”, en Technological Learning in the Transition to a Low-Carbon Energy System, M. Junginger y A. Louwen, Eds. Academic Press, 2020, pp. 221–231. doi: 10.1016/B978-0-12-818762-3.00012-1.

K. Lovegrove y W. Stein, “Chapter 1 - Introduction to concentrating solar power technology”, en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 3–17. doi: 10.1016/B978-0-12-819970-1.00012-8.

B. E. Tarazona-Romero, A. Campos-Celador, Y. A. Muñoz-Maldonado, J. G. Ascanio-Villabona, M. A. Duran-Sarmiento, y A. D. Rincón-Quintero, “Development of a Fresnel Artisanal System for the Production of Hot Water or Steam”, en Recent Advances in Electrical Engineering, Electronics and Energy, Cham, 2021, pp. 196–209. doi: 10.1007/978-3-030-72212-8_15.


W. J. Platzer, D. Mills, y W. Gardner, “Chapter 6 - Linear Fresnel Collector (LFC) solar thermal technology”, en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 165–217. doi: 10.1016/B978-0-12-819970-1.00006-2.

G. Morin, J. Dersch, W. Platzer, M. Eck, y A. Häberle, “Comparison of Linear Fresnel and Parabolic Trough Collector power plants”, Solar Energy, vol. 86, núm. 1, pp. 1–12, ene. 2012, doi: 10.1016/j.solener.2011.06.020.

G. Cau y D. Cocco, “Comparison of Medium-size Concentrating Solar Power Plants based on Parabolic Trough and Linear Fresnel Collectors”, Energy Procedia, vol. 45, pp. 101–110, ene. 2014, doi: 10.1016/j.egypro.2014.01.012.

R. Abbas, M. J. Montes, A. Rovira, y J. M. Martínez-Val, “Parabolic trough collector or linear Fresnel collector? A comparison of optical features including thermal quality based on commercial solutions”, Solar Energy, vol. 124, pp. 198–215, feb. 2016, doi: 10.1016/j.solener.2015.11.039.

R. Abbas, M. Valdés, M. J. Montes, y J. M. Martínez-Val, “Design of an innovative linear Fresnel collector by means of optical performance optimization: A comparison with parabolic trough collectors for different latitudes”, Solar Energy, vol. 153, pp. 459–470, sep. 2017, doi: 10.1016/j.solener.2017.05.047.

B. E. Tarazona-Romero, Á. Campos-Celador, Y. A. Muñoz-Maldonado, C. L. Sandoval-Rodríguez, y J. G. Ascanio-Villabona, “Prototype of lineal solar collector Fresnel: Artisanal system for the production of hot water and/or water vapour”, Visión electrónica, vol. 14, núm. 1, Art. núm. 1, ene. 2020, doi: 10.14483/22484728.16013.

C. Tzivanidis, E. Bellos, D. Korres, K. A. Antonopoulos, y G. Mitsopoulos, “Thermal and optical efficiency investigation of a parabolic trough collector”, Case Studies in Thermal Engineering, vol. 6, pp. 226–237, sep. 2015, doi: 10.1016/j.csite.2015.10.005.

N. Kincaid, G. Mungas, N. Kramer, M. Wagner, y G. Zhu, “An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver”, Applied Energy, vol. 231, pp. 1109–1121, dic. 2018, doi: 10.1016/j.apenergy.2018.09.153.

D. Mentado-Islas, S. Elizalde-Carrizo, D. Jiménez-Islas, y J. Azuara-Jiménez, “Simulación de un Concentrador Solar de Canal Parabólico mediante el Software SolTrace”, Revista de Prototipos Tecnologicos, vol. 2, núm. 6, pp. 68–75, 2016.

N. Kincaid, G. Mungas, N. Kramer, y G. Zhu, “Sensitivity analysis on optical performance of a novel linear Fresnel concentrating solar power collector”, Solar Energy, vol. 180, pp. 383–390, mar. 2019, doi: 10.1016/j.solener.2019.01.054.

M. A. Moghimi, K. J. Craig, y J. P. Meyer, “A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method”, Solar Energy, vol. 116, pp. 407–427, jun. 2015, doi: 10.1016/j.solener.2015.04.014.

M. Hongn, S. F. Larsen, M. Gea, y M. Altamirano, “Least square based method for the estimation of the optical end loss of linear Fresnel concentrators”, Solar Energy, vol. 111, pp. 264–276, ene. 2015, doi: 10.1016/j.solener.2014.10.042.

E. Bellos y C. Tzivanidis, “Development of analytical expressions for the incident angle modifiers of a linear Fresnel reflector”, Solar Energy, vol. 173, pp. 769–779, oct. 2018, doi: 10.1016/j.solener.2018.08.019.

A. Heimsath, F. Cuevas, A. Hofer, P. Nitz, y W. J. Platzer, “Linear Fresnel Collector Receiver: Heat Loss and Temperatures”, Energy Procedia, vol. 49, pp. 386–397, ene. 2014, doi: 10.1016/j.egypro.2014.03.042.

Z. D. Cheng, Y. L. He, y F. Q. Cui, “A new modelling method and unified code with MCRT for concentrating solar collectors and its applications”, Applied Energy, vol. 101, pp. 686–698, ene. 2013, doi: 10.1016/j.apenergy.2012.07.048.

Y. Qiu, Y.-L. He, Z.-D. Cheng, y K. Wang, “Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods”, Applied Energy, vol. 146, pp. 162–173, may 2015, doi: 10.1016/j.apenergy.2015.01.135.

Y. Qiu, Y.-L. He, M. Wu, y Z.-J. Zheng, “A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver”, Renewable Energy, vol. 97, pp. 129–144, nov. 2016, doi: 10.1016/j.renene.2016.05.065.

Z.-D. Cheng, X.-R. Zhao, Y.-L. He, y Y. Qiu, “A novel optical optimization model for linear Fresnel reflector concentrators”, Renewable Energy, vol. 129, pp. 486–499, dic. 2018, doi: 10.1016/j.renene.2018.06.019.

D. Jafrancesco et al., “Optical simulation of a central receiver system: Comparison of different software tools”, Renewable and Sustainable Energy Reviews, vol. 94, pp. 792–803, oct. 2018, doi: 10.1016/j.rser.2018.06.028.

NREL, “SolTrace | Concentrating Solar Power”, Concentrating Solar Power, 2021. https://www.nrel.gov/csp/soltrace.html (consultado feb. 26, 2021).

CENER, “Tonatiuh”, https://iat-cener.github.io/tonatiuh/, 2021. https://iat-cener.github.io/tonatiuh/ (consultado feb. 26, 2021).

P. L. Leary y J. D. Hankins, “User’s guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants”, Sandia National Lab. (SNL-CA), Livermore, CA (United States), SAND-77-8280, feb. 1979. doi: https://doi.org/10.2172/6371450.

M. C. Stoddard, S. Faas, C. Chiang, G. Kolb, y D. Alpert, “Solergy (Beta Version 1)”, Sandia National Laboratories, SOLERGY; 002377IBMPC00, mar. 2009. Consultado: mar. 03, 2021. [En línea]. Disponible en: https://www.osti.gov/biblio/1231189

NREL, “System Advisor Model - SAM”, System Advisor Model - SAM, 2021. https://sam.nrel.gov/ (consultado mar. 03, 2021).

N. C. Cruz, J. L. Redondo, M. Berenguel, J. D. Álvarez, y P. M. Ortigosa, “Review of software for optical analyzing and optimizing heliostat fields”, Renewable and Sustainable Energy Reviews, vol. 72, pp. 1001–1018, may 2017, doi: 10.1016/j.rser.2017.01.032.

C. K. Ho, Software and Codes for Analysis of Concentrating Solar Power Technologies. 2008.


O. R. Delgado Carreño, “METODOLOGÍA PARA LA EVALUACIÓN DEL DESEMPEÑO ANUAL DE SISTEMAS DE CONCENTRACIÓN DE ENERGÍA SOLAR”, Posgrado, Universidad Autonoma de nuevo leon, Mexico, 2019. [En línea]. Disponible en: http://bibing.us.es/proyectos/abreproy/5027/fichero/CAPITULO+3.pdf

E. J. Duarte Celis, L. Sierra Roa, y J. A. Pulido Garzon, “Desarrollo de un sistema de captación de radiación solar difusa por medio de un sensor de superficie plana con el fin de analizar el comportamiento de la variable de radiación de la ubicación geográfica de las Unidades Tecnológicas de Santander.”, Pregrado, Unidades Tecnologias de Santander, Bucaramanga, 2020. Consultado: abr. 05, 2021. [En línea]. Disponible en: http://repositorio.uts.edu.co:8080/xmlui/handle/123456789/5018

DOI: http://dx.doi.org/10.21533/pen.v9i4.1987


  • There are currently no refbacks.

Copyright (c) 2021 Brayan Eduardo Tarazona Romero

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License