### Analysis of flow dynamics on Buslaev contour networks

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Buslaev A.P., Yashina M.V. Mathematical aspects on traffic of incompressible worms on simple circular structures. Proceedings of the 16th International Conference on Computational and Mathematical Methods on Science and Engineering, CMMSE 2016, 4-8 July, 2016, vol. 1, pp. 273 –279. ISBN 978-84-608-6082-2

V. V. Kozlov, A. P. Buslaev, A.G. Tatashev, M.V. Yashina. On dynamical systems modelling for transport and communication. CMMSE– 2014, CostaBallena, Rota, Cadiz (Spain) July 3rd-7th, 2014.

K. Nagel and M. Schreckenberg, Cellular automation model for freeway traffic, J. Phys. I. 9, 1992, pp. 296–305.

Blank M.L. Exact analysis of dynamical systems arising in models of traffic flow. Russian Mathematical Surveys (2000), vol. 55, no. 3, pp. 562- 563

Gray L, Grefeath D. The ergodic theory of traffic jams. Journal of Statistical Physics, 2001, vol 105,

no.3/4, pp. 413-452.

Biham O., Middleton A. A., Levine D. Self-organization and a dynamical transition in traffic-flow models //Physical Review A. – 1992. – Т. 46. – №. 10. – С. R6124.

D’Souza R. M. Coexisting phases and lattice dependence of a cellular automaton model for traffic flow //Physical Review E. – 2005. – Т. 71. – №. 6. – С. 066112.

Angel, O., Holroyd, A., & Martin, J. (2005). The jammed phase of the Biham-Middleton-Levine traffic model. Electronic Communications in Probability, 10, 167-178.

Austin, T. D., & Benjamini, I. (2006). For what number of cars must self organization occur in the Biham-Middleton-Levine traffic model from any possible starting configuration?

Bugaev A.S., Buslaev A.P., Kozlov V.V., Yashina M.V. Distributed Problems of Monitoring and Modern Approaches to Traffic Modeling, 14th International IEEE Conference on Intelligent Transportation Systems (ITSC 2011), (2011) 477 - 481.

Buslaev A.P., Tatashev A.G., Yashina M.V. Cluster flow models

and properties of appropriate dynamical systems / J. of Applied functional analysis, v. 8, n.1, 2013, p. 54-77

V. V. Kozlov, A. P. Buslaev, and A. G. Tatashev. On synergy of totally connected flows on chainmails. Proc. of the 13 International Conference on Computational and Mathematical Methods in Science and Engineering, Almeria, Spain. Vol. 3. 2013.

Buslaev A.P., Fomina M.Yu., Tatashev A.G., Yashina M.V. On discrete flow networks model spectra: statement, simulation, hypotheses. Journal of Physics: Conference Series, 1053 (2018) 012034, pp. 1–7

V.V. Kozlov, A. P. Buslaev, A. G. Tatashev Monotonic walks on a necklace and a coloured dynamic vector International Journal of Computer Mathematics, 92:9 (2015), 1910–1920. Taylor& Francis

S. Wolfram. Statistical mechanics of cellular automata, Rev. Mod. Phys., 55, 1983, pp. 601-644.

Buslaev A. P., Tatashev A. G., Yashina M. V. (2018) Flows spectrum on closed trio of contours. Eur. J. Pure Appl. Math., 11(1): 260-283.

V. V. Kozlov, A. P. Buslaev, and A. G. Tatashev (2015) A dynamical communication system on a network. J. Comput. Appl. Math., Vol. 275, p. 247–261

Kozlov V.V., Buslaev A. P., Tatashev A. G., Yashina M. V. (2015) Dynamical systems on honeycombs // Traffic and Granular Flow '13, Springer, 2015, Part II, 441–452.

Buslaev A.P., Тatashev A.G., Yashina M.V. (2013) Qualitative Properties of Dynamical System on Toroidal Chainmail // AIP Conference Proceedings, p. 1144-1147

Lukanin V.N., Buslaev A.P., Trofimenko Yu.W., Yashina M.V. (1998) Modelling and optimal control of transport flows in megapolis// International Journal of Vehicle Design, 19(3), 267-281.

DOI: http://dx.doi.org/10.21533/pen.v7i1.382

### Refbacks

- There are currently no refbacks.

Copyright (c) 2019 Marina Victorovna Yashina

This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

This work is licensed under a Creative Commons Attribution 4.0 International License