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ABSTRACT

This study presents an engineering-oriented correlation analysis of water quality variables—pH, temperature,
and dissolved oxygen (DO)—in a passive aquaponic system integrating red tilapia (Oreochromis spp.) and
lettuce (Lactuca sativa) under tropical outdoor conditions. Environmental data were collected at 45-minute
intervals over three months using embedded sensors and a microcontroller-based data logger. Pearson’s r,
Spearman’s 7, and Kendall’s T were applied to evaluate linear and monotonic relationships among variables.
The results indicate a moderate, statistically significant positive correlation between pH and DO (Pearson’s
r = 0.566,p < 0.001), and a weaker but still significant positive correlation between temperature and DO
(Pearson’s r = 0.420,p < 0.001). The latter contrasts with the expected inverse trend in closed systems,
suggesting compensatory biological processes in passive tropical environments. No significant relationship
was found between pH and temperature (Pearson’s r = 0.081,p = 0.271). These findings demonstrate that
natural environmental dynamics can support acceptable water quality levels without active aeration or control
systems. The correlation structure obtained may inform the design of low-cost, energy-efficient monitoring
frameworks and decision-support tools for aquaponic systems in resource-constrained or off-grid
environments.
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1. Introduction

Aquaponics is an integrated and sustainable agricultural system that combines aquaculture and hydroponics in
a closed-loop cycle, where water and nutrients are continuously recirculated between fish and plant units [1],
[2]. This approach reduces freshwater consumption and nutrient loss, offering a circular and resilient solution
to global food and water challenges, particularly in areas affected by water scarcity and land degradation [3],
[4]. It has been successfully implemented in both urban and peri-urban settings to meet growing demands for
localized food production while minimizing environmental impact [5], [6].

A key determinant of system efficiency and biological performance in aquaponics is water quality. Critical
parameters such as pH, dissolved oxygen (DO), and temperature affect plant nutrient uptake, fish respiration,
and microbial nitrification [7], [8]. For instance, pH governs nutrient solubility and microbial efficiency, while
DO availability supports aerobic respiration in fish and nitrifying bacteria [9], [10]. Temperature, in turn,
influences both DO solubility and metabolic rates across species. Its regulation is therefore essential to avoid
thermal stress or oxygen depletion [11], [12].

Although modern aquaponic systems increasingly incorporate Internet of Things (IoT) technologies for real-
time monitoring and automation [13], [14], these solutions often rely on high-cost infrastructure and advanced
technical support. This makes them impractical for small-scale or rural farmers, particularly in developing
countries [15], [16]. In such contexts, low-intervention or passive aquaponic systems operated without active
control or mechanical aeration are emerging as viable, low-cost alternatives [17], [18]. These systems depend
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heavily on natural balances and environmental dynamics, underscoring the need for improved understanding of
variable interactions to support decision-making in the absence of automation.

Despite the ecological relevance of passive systems, most existing studies focus on controlled laboratory
conditions, with limited emphasis on long-term, high-frequency field data from tropical outdoor settings [19],
[20]. Moreover, few studies have applied comprehensive statistical methods such as correlation matrices,
monotonic correlation analysis, or time-resolved comparisons to explore relationships between water quality
variables under real-world conditions [21], [22]. Understanding these correlations is vital, as they can inform
early warning mechanisms, guide manual interventions, or even serve as the basis for predictive algorithms in
future low-cost digital systems [23].

2. Research method
2.1. Experimental Setup

The experimental trial was conducted in a closed recirculating aquaponic system with a floating bed
configuration, located in the rural area of Barro Blanco, Piedecuesta, Santander, Colombia (7°01'N, 73°03'W;
altitude: 1005 m). In this design, the hydroponic grow bed was positioned directly above the fish tank, forming
a compact vertical layout. Water was recirculated between the aquatic and plant subsystems without external
discharge, except for minimal replenishment due to evaporation. The site is characterized by a tropical climate,
with daily temperatures typically ranging from 22 °C to 30 °C and moderate rainfall. The aquaponic unit
consisted of a 1000-liter circular tank stocked with red tilapia (Oreochromis spp.) and a hydroponic bed
supporting lettuce (Lactuca sativa) on floating polystyrene rafts.

Water circulation and basic aeration were maintained using a brushless DC submersible pump (rated 1000 L/h,
5 m head, 12 V/24 V). The pump transported water from the fish tank through a three-stage filtration system:
(i) a coarse solids separator, (ii) a fine sediment trap, and (iii) a dual-chamber biofilter. From the biofilter, the
water was delivered to the grow bed and subsequently returned to the fish tank via gravitational free-fall. This
return path generated surface turbulence, enabling passive aeration without mechanical diffusers.

The entire system, including the pump and sensor array, was powered by a photovoltaic solar panel. Energy
consumption was estimated based on two components: a 20 W brushless DC pump operating approximately 10
hours per day, and a 12 W Raspberry Pi 3 microcontroller running continuously. Together, these devices
required around 488 Wh per day. Considering typical solar insolation in the region (5 peak sun hours) and
standard efficiency losses (30%), a solar panel of at least 150 W was necessary to ensure stable off-grid
operation.

Environmental monitoring was performed using three calibrated sensors: a digital thermometer (£0.5 °C
accuracy), a galvanic-type dissolved oxygen sensor (£0.2 mg/L accuracy), and a glass electrode pH sensor (+0.1
pH unit accuracy). Data were recorded at 45-minute intervals over three months (March to May), yielding 2880
time-resolved observations per variable. Manual weekly calibration was conducted following FAO-
recommended protocols for small-scale aquaponics [1].

Due to its critical role in biological performance, dissolved oxygen was continuously monitored [24].

2.2. Statistical Analysis

The statistical analysis was conducted in two phases: (1) evaluation of the normality of each variable, and (2)
determination of the correlation strength between variable pairs. This procedure followed established
methodological guidelines for water quality and environmental data [25].

To assess normality, two complementary tests were applied. The Shapiro—Wilk test evaluated whether each
dataset conformed to a Gaussian distribution using order statistics, while the D’ Agostino—Pearson omnibus test
jointly assessed skewness and kurtosis. A significance level of @ = 0.05 was adopted for both tests. The
outcomes informed the appropriate choice of correlation method for each pair of variables: temperature (T), pH,
and dissolved oxygen (DO). Correlation analysis included Pearson’s correlation coefficient (r), which quantifies
linear associations and is computed as:

r= Ve (=) (yi-y) )
Jz;;l(x,-—f)z Jz;;l(yi—y)z
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To assess monotonic and ordinal relationships, Spearman’s rank correlation coefficient (ry) and Kendall’s tau
(1) were also calculated. Spearman’s coefficient is defined as:

Y d?
Ly e D )

Ty =
where d; denotes the rank difference of each observation pair. Kendall’s tau measures the ratio of concordant

to discordant pairs, expressed as:

__ (number of concordant pairs — number of discordant pairs)

%n(n—l)

€)

Each correlation coefficient was calculated for the pairs (pH, DO), (T, DO), and (pH, T).

The strength of the relationships was interpreted following the classification proposed by Dancey and Reidy
[25]: weak if |r] <0.3, moderate if 0.3 < |r| < 0.7, and strong if |r] > 0.7. Statistical significance was determined
at p <0.05.

3. Results
3.1. Descriptive analysis of water quality variables

A total of 2880 time-resolved measurements were collected for each variable—pH, temperature, and dissolved
oxygen (DO)—during the monitoring period from March to May. As shown in Figure 1, the empirical
distributions of these variables were represented using histograms with kernel density estimations. The pH
values ranged from 4.5 to 9.5, with a modal value around 6.8, indicating predominantly slightly acidic to neutral
conditions. Temperature values fluctuated between 19.5 °C and 29.8 °C, clustering around 26 °C, which is
consistent with typical tropical climate conditions. DO concentrations varied from 1.8 to 10.0 mg/L, with a high
density of values between 5 and 7 mg/L, suggesting adequate oxygenation for aquaponic organisms under
passive operation.

Histograms of pH, Temperature, and Dissolved Oxygen
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Figure 1. Distributions of pH, temperature, and dissolved oxygen levels; kernel density estimations illustrate
the frequency and spread of each variable

3.2. Correlation matrix and pairwise relationships

As illustrated in Figure 2, the Pearson correlation matrix summarizes the linear associations among the three
variables. A moderate and statistically significant positive correlation was observed between pH and DO
(Pearson r = 0.566, p < 0.001), corroborated by Spearman’s 7, = 0.589 and Kendall’s 7= 0.426 (p < 0.001 in
both cases). This indicates that increases in pH tended to coincide with elevated DO levels.

Temperature and DO also exhibited a positive and statistically significant correlation, although of lesser
magnitude (Pearson r = 0.421, p < 0.001; Spearman 7, = 0.387; Kendall t = 0.271). This trend contrasts with
the inverse relationship typically reported in controlled or closed systems, where oxygen solubility decreases as
water warms. In the present passive, outdoor configuration, compensatory mechanisms such as photosynthetic
oxygen release and enhanced gas exchange at the water—air interface may offset thermal suppression of oxygen
solubility [9], [11], [12]. This result highlights the importance of considering environmental dynamics when
interpreting temperature—DO interactions in tropical aquaponic environments.

In contrast, the correlation between pH and temperature was weak and not statistically significant (Pearson r =
0.082, p = 0.2718), a finding reinforced by Spearman ( g = 0.118, p = 0.1133) and Kendall (t = 0.077, p =
0.1251). This suggests that these variables operated independently during the study period.
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Correlation Matrix: pH, DO, Temperature
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Figure 2. Pearson correlation matrix among water quality parameters; color scale indicates strength and
direction of linear relationships

3.3. Scatter plot evaluation

Scatter plots with regression lines were generated to illustrate the relationships between the variable pairs
(Figures 3-5). As shown in Figure 3, a clear positive trend between pH and DO is evident, confirming the
statistical results.
Scatter Plot: pH vs DO
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Figure 3. Scatter plot and regression line between pH and dissolved oxygen

This association, illustrated in Figure 3, may be attributed to photosynthetic activity and microbial processes
that simultaneously increase pH and oxygen levels during daylight hours. As shown in Figure 4, the relationship
between temperature and DO also exhibits a positive correlation. However, the data display greater dispersion,
suggesting that additional environmental or biological factors may have influenced the variability.

Scatter Plot: Temp vs DO
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Figure 4. Scatter plot and regression line between temperature and dissolved oxygen
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The scatter plot of pH and temperature in Figure 5 shows no discernible pattern, which is consistent with the
absence of a statistically significant association.

Scatter Plot: pH vs Temp
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Figure 5. Scatter plot and regression line between pH and temperature

No significant outliers or anomalies were detected in the plots, confirming the integrity and consistency of the
dataset throughout the monitoring period.

4. Discussion and conclusions

The results of this study demonstrate statistically significant correlations among key water quality parameters
in a closed recirculating aquaponic system under tropical outdoor conditions. The moderate positive correlation
between pH and dissolved oxygen (DO) (r = 0.566, p < 0.001) uggests that natural biological processes—such
as microbial nitrification and photosynthesis—may jointly influence these variables. This observation aligns
with previous findings indicating that aquatic photosynthetic organisms can elevate both pH and DO levels
during daylight hours, particularly in low-intervention systems [9], [11].

The weaker but still significant correlation between temperature and DO (r = 0.421, p < 0.001) is notable. In
controlled aquaculture systems, temperature usually shows a negative correlation with DO due to solubility
limits. In contrast, the positive association found here likely reflects compensatory dynamics such as
photosynthetic oxygenation and atmospheric exchange, which can offset solubility constraints in open,
unshaded systems [11], [12]. This emphasizes the importance of site-specific data acquisition in tropical
aquaponic settings, since extrapolations from temperate or indoor systems may be misleading.

The lack of correlation between pH and temperature confirms that these two parameters fluctuated
independently. For system managers in low-resource contexts, this independence is useful: variations in pH
cannot be assumed to reflect thermal stress, and vice versa. This reduces the risk of false alarms in monitoring
protocols and supports the use of independent control thresholds.

These insights have direct implications for the design of low-cost aquaponic systems. In the absence of advanced
automation, understanding statistically supported parameter relationships enables informed decision-making
and proactive intervention with minimal sensor inputs. For instance, the coupling between pH and DO could
support lightweight decision-support tools based on microcontrollers (e.g., Arduino, ESP32) integrated with
cloud platforms such as Firebase. Such systems could also serve as a first step toward the gradual incorporation
of artificial intelligence techniques, including anomaly detection and predictive modeling, without requiring
high infrastructure investment.

From a sustainability perspective, the findings contribute to the development of aquaponic technologies that are
energy-efficient, environmentally adaptive, and scalable across agroecological zones. Demonstrating the
viability of a low-intervention system powered by solar energy and operating without mechanical aeration
supports the goals of sustainable intensification and circular bioeconomy, particularly in areas with limited
resources.

In conclusion, this study shows that pH and DO are moderately and positively correlated, temperature and DO
also correlate positively in contrast to conventional expectations, and pH and temperature remain statistically
independent. These findings not only demonstrate significant interrelationships among water quality variables

789



PEN Vol. 13, No. 4, October 2025, pp.785-792

but also provide practical insights for designing robust, low-maintenance aquaponic systems. Future work
should test different biological loads, species combinations, and seasonal conditions, and explore how
correlation-based indicators can be integrated into predictive control schemes and data-driven diagnostics.

Declaration of competing interest

The authors declare that they have no known financial or non-financial competing interests in
any material discussed in this paper.

Funding information

No funding was received from any financial organization to conduct this research.

Acknowledgements

The authors would like to thank the Unidades Tecnoldgicas de Santander (UTS) for their institutional support,
and the Colombian Bicentennial Scholarships program for facilitating research continuity during the study
period.

Author contribution

J.S. Fandifio Pelayo: conceptualization, experimental design, data analysis, and manuscript writing. R. Cazes
Ortega: contribution to methodological development and support in analytical interpretation. L.S. Mendoza
Castellanos: support in results interpretation and graphical data presentation. O. Lengerke: academic supervision
and critical review of methodological consistency. All authors reviewed and approved the final version of the
manuscript.

References

[1] C. Somerville, M. Cohen, E. Pantanella, A. Stankus, and A. Lovatelli, “Small-scale aquaponic food
production: Integrated fish and plant farming,” FAO Fisheries and Aquaculture Technical Paper,no. 589, Food
and Agriculture Organization, Rome, Italy, 2014. [Online]. Available:
https://openknowledge.fao.org/server/api/core/bitstreams/2ca21047-390f-42¢cd-bd1d-0c2ebc9c1df2/content

[2] S. Goddek, A. Joyce, B. Kotzen, and G. M. Burnell, Eds., Aquaponics Food Production Systems: Combined
Aquaculture and Hydroponic Production Technologies for the Future. Cham: Springer, 2019.
https://doi.org/10.1007/978-3-030-15943-6

[3] B. Yep and Y. Zheng, “Aquaponic trends and challenges — a review,” Journal of Cleaner Production, vol.
228, pp. 1586—1599, 2019. https://doi.org/10.1016/j.jclepro.2019.04.290

[4] D. C. Love et al., “An international survey of aquaponics practitioners,” PLOS ONE, vol. 9, no. 7, €102662,
2014. https://doi.org/10.1371/journal.pone.0102662

[5] L. A. Ibrahim, H. Shaghaleh, G. M. El-Kassar, and M. Abu-Hashim, “Aquaponics: A sustainable path to
food sovereignty and enhanced water use efficiency,” Water, vol. 15, no. 24, p. 4310, 2023.
https://doi.org/10.3390/w15244310

[6] C. Mullins, B. Nerrie, and M. Beem, Principles of Small-Scale Aquaponics, Southern Regional Aquaculture
Center, Fact Sheet no. 5007, Oklahoma State University Extension, 2015. [Online]. Available:
https://extension.okstate.edu/fact-sheets/principles-of-small-scale-aquaponics.html

[7] R. Sallenave, “Important water quality parameters in aquaponics systems,” NMSU Extension Guide CR 680,
New Mexico State University, 2020. [Online]. Available: https://pubs.nmsu.edu/_circulars/CR680/

[8] B. Delaide, S. Goddek, and M. H. Jijakli, “Lettuce (Lactuca sativa L. var. sucrine) growth performance in
aquaponic vs. hydroponic systems,” Water, vol. 8, no. 10, p. 467, 2016. https://doi.org/10.3390/w8100467

790


https://openknowledge.fao.org/server/api/core/bitstreams/2ca21047-390f-42cd-bd1d-0c2ebc9c1df2/content
https://doi.org/10.1007/978-3-030-15943-6
https://doi.org/10.1016/j.jclepro.2019.04.290
https://doi.org/10.1371/journal.pone.0102662
https://doi.org/10.3390/w15244310
https://extension.okstate.edu/fact-sheets/principles-of-small-scale-aquaponics.html
https://pubs.nmsu.edu/_circulars/CR680/
https://doi.org/10.3390/w8100467

PEN Vol. 13, No. 4, October 2025, pp.785-792

[9] B. Ali, A. Anushka, and A. Mishra, “Effects of dissolved oxygen concentration on freshwater fish: A
review,” International Journal of Fisheries and Aquatic Studies, vol. 10, no. 4, pp. 113-127, 2022.
https://doi.org/10.22271/fish.2022.v10.i4b.2693

[10] M. Krastanova, I. Sirakov, S. Ivanova Kirilova, D. Yarkov, and P. Orozova, “Aquaponic systems:
biological and technological parameters,” Biotechnology & Biotechnological Equipment, vol. 36, no. 1, pp.
305-316, 2022. https://doi.org/10.1080/13102818.2022.2074892

[11] S. Wongkiew, Z. Hu, K. Chandran, J. W. Lee, and S. K. Khanal, “Nitrogen transformations in aquaponic
systems: A review,” Aquacultural Engineering, vol. 76, pp. 9-19, 2017.
https://doi.org/10.1016/j.aquaeng.2017.01.004

[12] H. Y. Yildiz, T. B. Samsunlu, D. Parisi, G. M. Burnell, and S. Goddek, “Fish welfare in aquaponic systems:
Its relation to water quality with an emphasis on feed and faeces—a review,” Water, vol. 9, no. 1, p. 13, 2017.
https://doi.org/10.3390/w9010013

[13] Y. Haruo, H. Yamamoto, M. Arakawa, and I. Naka, “Development and evaluation of environmental/growth
observation sensor network system for aquaponics,” in Proc. 2020 IEEE Int. Conf. Consumer Electronics
(ICCE), 2020. https://doi.org/10.1109/ICCE46568.2020.9043018

[14] M. Flores-Iwasaki, D. Torres-Rojas, J. A. Ledezma-Espinoza, C. A. Rodriguez-Flores, D. E. Villasefior-
Cendejas, and J. L. Garcia-Alcaraz, “Internet of things (IoT) sensors for water quality monitoring in aquaculture
systems: A systematic review and bibliometric analysis,” AgriEngineering, vol. 7, no. 3, p. 78, 2025.
https://doi.org/10.3390/agriengineering7030078

[15] K. A. Obirikorang, B. A. Gyampoh, and W. Asante, “Aquaponics for improved food security in Africa: A
review,”  Frontiers in  Sustainable  Food  Systems, vol. 5, Art. no. 705549, 2021.
https://doi.org/10.3389/fsufs.2021.705549

[16] L. H. David, S. M. Pinho, F. Agostinho, J. I. Costa, M. C. Portella, K. J. Keesman, et al., “Sustainability of
urban aquaponics farms: An emergy point of view,” Journal of Cleaner Production, vol. 300, Art. no. 129896,
2021. https://doi.org/10.1016/i.jclepro.2021.129896

[17] Z. Schmautz, C. A. Espinal, T. H. M. Smits, E. Frossard, and R. Junge, “Nitrogen transformations across
compartments of an aquaponic system,” Aquacultural Engineering, vol. 92, Art. no. 102145, 2021.
https://doi.org/10.1016/j.aquaeng.2021.102145

[18] Z. Schmautz, C. A. Espinal, T. H. M. Smits, E. Frossard, R. Junge, and M. Krebs, “Microbial diversity
across compartments in an aquaponic system and its connection to the nitrogen cycle,” Science of the Total
Environment, vol. 852, Art. no. 158426, 2022. https://doi.org/10.1016/j.scitotenv.2022.158426

[19] H. Monsees, W. Kldas, and S. Wuertz, “Decoupled systems on trial: Eliminating bottlenecks to improve
aquaponic  processes,” PLOS ONE, vol. 12, mno. 9, Art. no. €e0183056, 2017.
https://doi.org/10.1371/journal.pone.0183056

[20] D. C. Love, M. S. Uhl, and L. Genello, “Energy and water use of a small scale raft aquaponics system in
Baltimore, Maryland, United States,” Aquacultural Engineering, vol. 68, pp. 19-27, 2015.
https://doi.org/10.1016/j.aquaeng.2015.07.003

[21] B. Siswanto, Y. Dani, D. Morika, and B. Mardiyana, “A simple dataset of water quality on aquaponic fish
ponds based on an internet of things measurement device,” Data in Brief, vol. 48, Art. no. 109248, 2023.
https://doi.org/10.1016/5.dib.2023.109248

[22] Y.-X. Huang and F. G. Schmitt, “Time-dependent intrinsic correlation analysis of temperature and
dissolved oxygen time series using empirical mode decomposition,” unpublished, 2014. [Online]. Available:
https://arxiv.org/abs/1401.4201

791


https://doi.org/10.22271/fish.2022.v10.i4b.2693
https://doi.org/10.1080/13102818.2022.2074892
https://doi.org/10.1016/j.aquaeng.2017.01.004
https://doi.org/10.3390/w9010013
https://doi.org/10.1109/ICCE46568.2020.9043018
https://doi.org/10.3390/agriengineering7030078
https://doi.org/10.3389/fsufs.2021.705549
https://doi.org/10.1016/j.jclepro.2021.129896
https://doi.org/10.1016/j.aquaeng.2021.102145
https://doi.org/10.1016/j.scitotenv.2022.158426
https://doi.org/10.1371/journal.pone.0183056
https://doi.org/10.1016/j.aquaeng.2015.07.003
https://doi.org/10.1016/j.dib.2023.109248
https://arxiv.org/abs/1401.4201

PEN Vol. 13, No. 4, October 2025, pp.785-792

[23] P. Schober, C. Boer, and L. A. Schwarte, “Correlation coefficients: Appropriate use and interpretation,”
Anesthesia & Analgesia, vol. 126, no. 5, pp- 1763-1768, 2018.
https://doi.org/10.1213/ANE.0000000000002864

[24] A. Ghasemi and S. Zahediasl, “Normality tests for statistical analysis: A guide for non-statisticians,”
International Journal of Endocrinology and Metabolism, vol. 10, no. 2, pp. 486489, 2012.
https://doi.org/10.5812/ijem.3505

[25] U. Knaus, H. Palm, and I. Worch, “Important water quality parameters in aquaponics systems,” NMSU
Extension Guide CR-680, 2020. [Online]. Available: https://pubs.nmsu.edu/_circulars/CR680/

792


https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.5812/ijem.3505
https://pubs.nmsu.edu/_circulars/CR680/

