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ABSTRACT   

The energy simulation of buildings is presented as a tool to analyze the comfort, consumption and energy 

efficiency of buildings, however, the discrepancy between simulated models and real data has been a 

constant, for this reason, energy model calibrations are performed to increase the reliability of the predictions 

of the simulation. This research carried out the simulation and calibration of the energy model of a rural 

house, located in a cold climate at more than 3000 meters above sea level, the study was developed in three 

phases, starting with the monitoring of climatological variables, followed by the energy modeling and finally, 

the calibration of the model is achieved by applying the iterative and scatter plot methods, allowing the 

selection of a model where a sequence of linear data was observed, with a strong relationship of more than 

80% accuracy between the monitored data and the simulated energy model. 
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1. Introduction 

Climate change and global warming are intensifying the hot and cold seasons, significantly affecting the comfort 

inside our homes. Faced with this reality, the United Nations (UN) has highlighted the importance of developing 

sustainable cities and human settlements [1]. Given that the energy consumption of buildings represents 

approximately 30% of the total worldwide, the analysis of energy efficiency in housing emerges as a 

fundamental pillar to achieve global sustainability goals [2]  

In the search for solutions, building energy simulation (BES) models have established themselves as 

indispensable tools for assessing consumption and improving energy efficiency in contemporary architecture, 

among the most prominent tools in this field are DOE-2, EnergyPlus, TRNSYS and ESP-r. Each of these 

programs has distinctive features and capabilities suitable for various energy efficiency analyses. Choosing the 

right tool and applying it correctly is crucial to obtaining reliable results [3], [4] 

Despite the growing interest in building energy simulation, the discrepancy between simulated model results 

and real data poses significant challenges, influenced by the diversity of input data and the experience of the 

modeler [5], making the calibration of simulations an essential step to improve their accuracy and ensure reliable 

predictions [6]. Although much research has been conducted applying energy models to reduce greenhouse gas 

emissions, improve comfort and energy efficiency in buildings [7], [8], [9], there is a notable absence of studies 

focused on rural dwellings in consistently cold climates. This gap in the literature underscores the need to 

explore this area in greater depth. 
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In the present research the energy model of a rural house located in a cold climate at more than 3000 meters 

above sea level was evaluated, the residential unit was modeled in Design Builder and climatic variables were 

monitored, these data were processed by EnergyPlus that through an analytical approach using an iterative 

method together with statistical techniques calibrated the energy model and determine the uncertainties of the 

calibration, it is expected that the findings of this study can be applied in practice to improve energy efficiency 

and comfort in rural dwellings. 

2. Case study 

The house analyzed is located at the following coordinates 7.15,-72.91 in a rural area of the municipality of 

Berlín-Santander (Colombia), this geographical area is classified as a high mountain paramo type at an altitude 

of 3400 meters above sea level, with temperatures that drop below 10°C and maximum temperatures that rarely 

exceed 20°C, the hottest months are February and August and the months with the lowest temperatures are 

January and July. The months with the highest rainfall are May and October with an average wind speed of 4 

km/hr [10]. The house is located in an area with low building density, on the top of a hillside facing east to west, 

which favors cross ventilation by natural draft. 

The materials and components that characterize the thermal envelope of the house are composed of brick walls 

with concrete partitions, a roof constructed of cedar wood, clay tiles and asphalt fabric and a stone slab floor, 

the living room has glazed walls with wooden frames (see fig.1). The house has a high degree of airtightness, 

showing few air leaks; it does not have mechanical or hybrid ventilation or air conditioning systems. 

Data on environmental parameters were monitored by means of an outdoor weather station and a sensor station 

inside the house under real occupancy conditions from March 21, 2023 to April 29, 2023, according to 

meteorological data from the site, this month represents the average of temperatures recorded from 2011 to 

2022, see Fig. 2. 

 

Figure 1. Aerial, front, side and rear view of rural housing in the case study. 

 
Figure 2. Monthly climogram of the year of study and historical climogram in the municipality of 

Berlín/Santander, Colombia 
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3. Methodology. 

The methodology implemented for the simulation and calibration of the energy model of the rural housing object 

of the case study, was structured in three main phases; the first phase is the monitoring, this initial phase consists 

of the installation of a weather station in the house, the station operated for a month, recording data under normal 

conditions of occupation and operation of the house. In the second phase, we proceeded to the construction of 

the energy model, taking into account the dimensions, materials and physical characteristics of the house. For 

this purpose, the integration of specialized software, such as Design Builder and Energy Plus, was used to 

perform a detailed analysis of the data in comparison with the real values obtained from the weather station. 

The last phase involves the application of an iterative method and statistical techniques to calibrate the energy 

model; this process allows identifying and quantifying the uncertainties associated with model calibration and 

selecting the model that matches the ideal model (see Fig. 3). 

Each of these phases is crucial to ensure the accuracy and validity of the energy model developed, thus allowing 

a reliable assessment of the energy performance of the rural housing under study. to confusion because equations 

do not balance dimensionally. If you must use mixed units, clearly state the units for each quantity that you use 

in an equation. 

 

Figure 3.  Methodology used in the study. 

 

3.1. Monitoring 

The monitoring of indoor and outdoor environmental data was performed by means of a Davis Vantage Pro2 

weather station and its complementary wireless sensors, both indoor air temperature and relative humidity, as 

well as humidity, wind speed, solar radiation, probability of rain, barometric pressure, wind direction and UV 

index, outside the house, these data were recorded during a period of 1 month (March 21, 2023 to April 29, 

2023) with 15-minute intervals, providing 959 data to the data acquisition system. (see Fig. 4). 

 

Figure 4. Sensor and weather station locations 



 PEN Vol. 12, No. 3, December 2024, pp.595-603 

598 

3.2. Energy model 

The energy modeling was developed with DesignBuilder (v.5.5.2.007) and energy Plus software, the latter is 

funded by the Building Technologies Office (BTO) of the U.S. Department of Energy (DOE) and developed by 

the National Renewable Energy Laboratory (NREL), several DOE national laboratories, academic institutions 

and private companies [11], [12] 

The energy model recreates the housing object of the case study, taking into account the climatic conditions of 

the municipality of Berlin (Santander), the actual orientation and the meteorological data obtained in the 

monitoring, as well as the physical characteristics; surface dimensions of rooms and rooms, doors windows, 

roofs, geometry of the structure and construction materials (see table 1), which allowed a detailed analysis of 

the simulated data compared with the actual values obtained by the weather station, Once the climatological 

data is imported, the types of layers to be worked and visualized in the model are selected. At the end of this 

stage, the model of the house is obtained. 

 
Figure 5.  Model housing 

 

Table 1. Physical characteristics of the house 

Items Characteristics 

Latitude 7.15 

Length 72.91 

Full occupancy 1 

Área 266 𝑚2 

Glazing area 15 𝑚2 

Type of glazing 3mm single glazing - clear glass 

Zone Living room 

Walls and partitions 100 mm brick, 100 mm concrete 

Cover 200 mm cedar Wood, 25 mm clay roof tiles, 5 mm asphalt cloth 

Floor flagstone 

3.3. Energy model calibration 

The calibration of the energy modeling of the house with respect to the real values of the meteorological station 

is developed through an analytical approach, the 959 data recorded in the monitoring stage were analyzed to 

determine the maximum correlation coefficient achievable in the modeling calibration, in the simulation were 

iterated in the form of sensitivity, eight parameters; occupancy, thermal loads, infiltrations, thermal 

transmittance, openings, natural ventilation, schedules and lighting, having as a reference point the internal 

temperature parameters of the house. The number of models simulated in the DesignBuilder software was 53, 

within the probabilistic framework of the comparison method, statistical techniques were used using metrics 
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such as Pearson's linear correlation coefficient, the coefficient of determination R2, the sample standard 

deviation, the average absolute error and the relative error that determine the uncertainties of the calibration 

model, where the model that coincides with the ideal model is selected. 

3.4. Formulation to determine correlation percentage 

Next, the formulations used by the statistical technique in this study will be shown [13]. The average temperature 

or arithmetic mean is the sum of sample data over the number of sample data as can be seen in equation (1), 

providing a representative value of the data set and thus understanding the trend of the data. 

𝑥̅ =
1

𝑛
 ∑ 𝑥𝑖 =

𝑥1 +  𝑥2+ . . . + 𝑥𝑛

𝑛

𝑛

𝑖=1

 (1) 

Absolute error is defined as the discrepancy between a value considered to be accurate and the approximate 

value of a quantity, and is determined by equation (2). 

𝐸 = 𝑉𝑚 − 𝑉𝑠 (2) 

Pearson's linear correlation coefficient: according to the author [13], it has a dimensionlessness as established 

in equation (3), by dividing the sum of squares of the product XY by the individual roots of the sums of squares 

of X and Y, a dimensionless index is obtained, expressed in ranges between -1 and 1, where -1 indicates that 

the variables have a close difference, but in opposite directions, the positive 1 implies that the variables have a 

high proximity in space. However, when the cosine of the function tends to 0, the variables are octagonal, 

indicating that they are not linearly related. 

𝑟 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2
 (3) 

The coefficient of determination R2, known as R-squared is explained by the regression model. In essence, R-

squared reflects the goodness of fit of a model to the variable it is intended to explain. This determination ranges 

between the values of 0 and 1, meaning that the closer the values are to 0, the less well fitted the values are, and 

the closer the values are to 1, the better the fit of the model. 

𝑅2 =
∑ (𝑌̂𝑡 −  𝑌̅)2𝑛

𝑡=1

∑ (𝑌̂𝑡 −  𝑌̅)2𝑛
𝑡=1

 (4) 

On the other hand, the measure of the dispersion of a data set is represented by the standard deviation. Indicated 

in equation (5), it states that less dispersion and higher precision will be obtained for values close to 0. 

𝑠 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1

𝑁 − 1
 (5) 

The relative error is described as the ratio between the absolute error and the value considered as accurate of a 

quantity, and is found using the following mathematical expression 

𝐸𝑟 =
𝑥𝑖 − 𝑥𝑡

𝑥𝑡
∗ 100 % (6) 

4. Results and discussion 

Once the energy model used for the calibration process was developed, 53 simulations were generated and 

compared with the indoor temperature data of the house, the objective of this comparison being to determine 

which model best fits the real behavior. After obtaining the 53 energy models, they were compared according 

to the dispersion criterion, the most dispersed (Model 48, M48), the moderately dispersed (Model 53, M53) and 

the least dispersed (Model 39, M39). 

For M48 the dwelling was parameterised during the monitoring time with an occupancy of 13 persons from 

Monday to Saturday from 08:00-18:00, a thermal load of miscellaneous gains expressed in power density of 5 

W/m2 indicated by the power per zone floor area throughout the day, an infiltration rate of air that is renewed 

7 times per hour, a thermal transmittance coefficient of 2.661 (W/m2. k) which is the sum of the amount of heat 
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that is transmitted through the building materials per unit square metre, openings of 15% considering that the 

house has only 2 doors that allow ventilation, but more than 12 windows that allow natural light to enter.  

In M53 it was indicated that the dwelling has an occupancy of 13 persons expected to be in the dwelling, a 

miscellaneous gain heat load expressed in power density of 80 W/m2 and computer gain of 30 W/m2, an air 

infiltration rate that is renewed 12 times per hour, a thermal transmittance coefficient of 2.661 (W/m2.k), 

openings of 15% taking into account that the dwelling has only 2 doors that allow a natural ventilation of 7 ac/h. 

For model 39 it was indicated that the dwelling had during the monitoring time an occupancy of 4 persons who 

are expected to be in the dwelling 24/7, a miscellaneous gain thermal load expressed in power density of 38 

W/m2 indicated by the power per zone floor area throughout the day and another computer gain of 4 W/m2, an 

air infiltration rate that is renewed 7.5 times per hour, a thermal transmittance coefficient of 2.661 (W/m2. k), 

openings of 15% taking into account that the house has only 2 doors that allow the entry of ventilation, but with 

more than 12 windows that allow the entry of natural light and a natural ventilation of 1.5 ac/h 24/7 using the 

openings created in the design of the house. Table 2 shows the simulation variables for models 48, 53, 39. 

Table 2. Simulation variables of models 48, 53, 39. 

M48 

Greater 

dispersion 

Occupation 

(persons/area) 

Thermal loads 

(W/m2) 

Air infiltrations 

(ac/h) 

Thermal 

transmittance       

U(W/ m2.k) 

Openings 

0,05 

OE = 0 

7 

EW = 2,061 

AA = 15 

  
CPT = 0 BGW = 0,350 

MS = 5 FR = 0,250 

Ventilation Lighting Timetable 

0 GL = 0 08:00-18:00 Mon-Sat; OPEN 24/7; OFFICE_OPENOFF_LIGTH 

M53 Moderate 

dispersion 

Occupation 

(persons/area) 

Thermal loads 

(W/ m2) 
Infiltrations (ac/h) U(W/ m2.k) Openings 

0,05 

OE = 0 

12 

EW = 2,061 

AA = 15 

  
CPT = 30 BGW = 0,350 

MS = 80 FR = 0,250 

Ventilation Lighting Timetable 

OPEN 24/7; 7 GL = 0 08:00-18:00 Mon-Sat; OPEN 24/7; OFFICE_OPENOFF_LIGTH 

M39 

Less dispersion 

Occupation 

(persons/area) 

Thermal loads 

(W/ m2) 
Infiltrations (ac/h) U(W/ m2.k) Openings 

0,0179 

OE = 0 

7,5 

EW = 2,061 

AA = 15 

  
CPT = 4 BGW = 0,350 

MS = 38 FR = 0,250 

Ventilation Lighting Timetable 

OPEN 24/7; 1,5 GL = 0 08:00-18:00 Mon-Sat; OPEN 24/7; OFFICE_OPENOFF_LIGTH 

OE. Office Equipment, CPT. Computers, MS. Miscellaneous, EW. External Walls, BGW. Bellow Grade Walls, FR. Flat Roof, AA. Glazing Area, GL. 

General Lighting 
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Table 3. Data validation of the models 48, 53,39 

Statistical metrics M48 M53 M39 

Average temperature °C 20.85 18.166 15.654 

Pearson's linear correlation coefficient 0.791 0.811 0.820 

Coefficient of determination R2 0.626 0.658 0.672 

Sample standard deviation 6.305 2.250 1.842 

Mean absolute error -4.820 -2.401 0.111 

Relative error % -30.6 -15.2 0.7 

It is complex to obtain 100% accuracy between the simulated model and the real data, mainly due to the habits 

of the users, however, this study analyzed the indoor temperature ranges and trends, identifying that the model 

that came closest to the real data recorded by the weather station was the M39, (see Fig. 6) where a sequence of 

linear data was observed, with a strong relationship of more than 80% accuracy.  

Figure 6 shows the temperature graphs inside the house, where the blue line represents the monitored 

temperature data and the orange line the temperature provided by the simulation. It can be seen that the 

temperature range is between 10.7 and 24.2 °C, where the greatest difference between the real data and the 

model data does not exceed 3.8°C in the areas of higher temperature and 2.2°C in the lower temperature ranges, 

showing that the M39 model is consistent. 

 

Figure 6.  Scatter plots of the models 39. 

 

Table 5. Data validation of the models 39 

Statistical metrics M39 

Average temperature °C 15.654 

Pearson's linear correlation coefficient 0.820 

Coefficient of determination R2 0.672 

Sample standard deviation 1.842 

Mean absolute error 0.111 

Relative error % 0.7 

 

Regarding the temperature variation inside the house over time, the plots shown in Figure 7 were obtained. The 

set of data corresponding to the monitored temperature is shown in blue, while the simulated data is shown in 

orange. It is also shown that the range of temperatures inside the dwelling oscillates between 10.7 °C and 24.2 

°C. It is remarkable that the largest discrepancy between monitored and simulated data does not exceed 3.5°C 

and 2.2°C for higher and lower temperature ranges, respectively. This is evidence once again that the M39 

model is consistent with reality. 
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Figure 7. Comparison of simulated vs. monitored temperatures 

5. Conclusions  

The data monitored during the research reflect the adverse climatic conditions in a rural high mountain area 

with low temperatures, high solar radiation and high wind speeds, making it a sparsely inhabited area of 

Colombia, which motivates the development of thermal comfort studies for these populations. The calibration 

methodology developed in this research reveals that the adjustments are directed to reduce the uncertain 

parameters and evaluate their effect on the energy model through a sensitivity analysis, however, the manual 

iteration ends up deriving in an extensive process and sometimes without considerable variations from one 

parameter to another, based on this, it is recommended the use of numerical approaches that allow the integration 

in the data validation process. 

Accuracy in the measurement of actual occupancy conditions is crucial for the calibration of building energy 

models. The influence of users and their behavior, such as natural ventilation, plays a significant role in the 

variability of internal parameters and thus in the accuracy of the model. The implementation of surveys and 

monitoring devices, such as window opening contactors, can reduce uncertainty and improve the correlation 

between real and simulated data. 

It has been observed that infiltration and natural ventilation variables are particularly sensitive and have a 

considerable impact on indoor thermal oscillation ranges, as demonstrated during the temperature peak in the 

data collection period. This underscores the importance of considering these variables in the calibration of 

energy models. For future research, it is recommended to focus on the analysis of the impact of building 

infiltration. The amount of uncontrolled air introduces a large uncertainty in performance analyses, suggesting 

that a deeper understanding of this phenomenon could lead to more accurate models and ultimately more energy 

efficient buildings. 
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