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ABSTRACT   

This study aims to develop a hybrid neural network model based on image and sensor data for defect 

prediction in electronics manufacturing. A hybrid model that combines CNN with MLP operates as a defect 

prediction system for electronics production lines by uniting data from image inputs with sensor outputs to 

boost predictive accuracy levels. Defect data is obtained from a simulated Surface Mount Technology 

(SMT) production line through experimental methods, while Adam optimizer and Categorical Cross-

Entropy loss function perform the model optimization process. The proposed model demonstrates a 94.7% 

accuracy rate, which exceeds SVM (85.3%) and Decision Tree (82.1%) results while generating an AUC 

score of 0.96 to validate its high defect classification performance. The study reveals the charge of multi-

modal defect analysis for automated quality control. Steel, current problems on real-time deployment and 

computational efficiency necessitate further enhancement. 

Keywords: Automated quality control, product defects result in financial damage, complex failure 

patterns, CNN-MLP hybrid model, Industry 4.0. 

1. Introduction 

The quality control heavily depends on the defect prediction as electronics manufacturing has become 

progressively multifaceted. Product defects result in financial damage, in reduction of the product reliability, 

as well risk consumer safety [1]. The outdated inspection methods, together with statistical process control 

(SPC) and manual assessments, demonstrate insufficient accuracy when recognizing complex failure patterns. 

The change of manufacturing systems to Industry 4.0 demands important AI-driven system incorporation for 

higher manufacture efficiency and reduced defect amount [2]. Neural networks are an innovative analytical 

tool in terms of their resourcefully analyse complicated nonlinear data associations, making them model for 

manufacturing defect prognostication systems. By familiarising to previous defect patterns, neural networks 

offer more profits than out-dated defect identification systems. The system handles widespread sensor data 

while recognising non-standard patterns and smears learned knowledge for antedating future defects. Neural 

networks outdo traditional statistical models since they identify unrecognised data associations in large 

multidimensional datasets [3]. The flexibility of these systems allows them to distinguish effects in early 

stages of conception while familiarising to shifting processes, thus saving costs and refining manufacturing 

data. The implementation of neural networks for defect prediction demonstrates solid research potential 

because of its industrial benefits. 

The enhancement of machine learning defect prediction has numerous continuing challenges. The presentation 

of current models is reduced as they meet three main limitations: unwarranted datasets, noisy sensor readings, 

and conditions production that often change their status [4]. Standard techniques in this domain experience 

challenges with these situations, resulting in substandard prediction results [5]. A neural network predictive 

system development goal exists to establish an effective defect classifier and enhance detection precision 

while addressing manufacturing environment changes. The main goal is to build an experimental system that 

assesses multiple neural network designs and their operational effectiveness within production settings. The 

research establishes various essential objectives to reach this goal.  

1. Research gaps in defect prediction methodologies and AI applications for manufacturing will be 

identified through existing methodology analysis to construct an appropriate theoretical framework.  
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2. Anelectronics manufacturing process simulation model will be developed to produce data for 

designing a neural network system specialized in defect classification and prediction functions.  

3. Test the model effectiveness through statistical and machine learning metrics while performing result 

analysis and comparing it to standard defect detection approaches. 

The subsequent sections of this paper follow this pattern. The literature review section of this paper analyzes 

existing approaches for predicting defects while exploring the theoretical foundations of neural networks in 

detail. Section 3 details the experimental setup, data sources, and the selected neural network architecture. 

Section 4 delivers a comprehensive assessment of the obtained results while displaying visual data and 

conducting a performance assessment. Section 5 demonstrates the study outcomes that emphasise noteworthy 

observations, limitations, and functional requests. The study achieves in Section 6 with a summary and 

propositions for future direction.  

The development from out-dated defect inspection methods to AI-based predictive defect detection systems 

demonstrates the change from manual and statistical approaches to automated neural network architectures. 

Traditional methods, such as Statistical Process Control (SPC), Regression Analysis, and Automated Optical 

Inspection (AOI), count on on predefined rules and manual feature extraction, which limit their efficacy in 

detection complex defect patterns. In contrast, AI-based systems, chiefly those utilising Convolutional Neural 

Networks (CNNs), Multi-Layer Perceptrons (MLPs), and Recurrent Neural Networks (RNNs), mix data-

driven learning and multimodal data analysis to recognise complex patterns across image and sensor data. The 

subsequent flowchart visualises this evolution, stressing on the differences in data processing, feature 

extraction, and predictive proficiencies between traditional and AI-based defect detection systems (Figure 1). 

 

Figure 1. Evolution from traditional inspection methods to AI-based defect prediction systems 

Figure 1 demonstrates a clear move from rule-based, manually managed inspection practises toward 

automated, data-driven neural network approaches. This revolution enables manufacturers to switch 

multifaceted defect scenarios with sophisticated precision and efficacy by merging image and sensor data in 

predictive models. 

This investigation aimed to develop and validate a hybrid neural network model that integrated Convolutional 

Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs) for an effective defect prediction in 

electronics manufacturing. The main goal was to validate the superiority of multimodal data-driven 

approaches over traditional inspection systems by merging image and sensor data for more precise and strong 

defect classification. To attain this, the paper set three main objectives: (1) to identify methodological gaps as 

well as to establish a theoretical background for AI-based defect prediction; (2) to concept a simulation model 

in order to generate illustrative data and design the CNN-MLP architecture; finally (3) to assess the projected 

model’s presentation through comparative analysis with conventional methods by utilising standard evaluation 

metrics. These objectives guide the structure and methodology of the paper, forming the foundation for a 

practical, interpretable, and scalable defect prediction system aligned with Industry 4.0 manufacturing 

demands. 

2. Literature review 

Research on defect prediction in electronics manufacturing serves three essential objectives: enhancing 

product quality, cost reduction,and waste minimization [6]. Three traditional methods used for defect 

detection include statistical process control (SPC) and rule-based algorithms with image-based inspections. 
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These methods succeed moderately but do not identify complex non-linear data patterns in manufacturing, 

thus resulting in incorrect predictions and undetected defects [7]. 

The recent advancements in artificial intelligence and machine learning technologies allow scientists to create 

better predictive models for defect detection. Decision trees, support vector machines (SVM), and random 

forests belong to supervised learning techniques that perform classification based on historical production data 

records [8]. Deep learning techniques, mainly neural networks, have recently become prominent because they 

excel at processing extensive manufacturing data to discover concealed patterns [9]. Evaluating electronic 

components for defects through images becomes most effective when using convolutional neural networks 

(CNNs). In contrast, recurrent neural networks (RNNs) combined with transformer models provide the best 

failure prediction performance from sequential sensor data. 

2.1. Theoretical foundations of neural networks 

Artificial neural networks function as computational models that mimic human brain operations through 

layered artificial neurons that convert input information into predictive outputs [10]. A neural network 

contains three primary sections: an input layer and one or more hidden layers, an output layer, and a system of 

weighted connections that learns through training to decrease prediction errors. Manufacturers frequently 

apply such networks to defect prediction because they demonstrate excellence in identifying intricate patterns 

in manufacturing data [11]. The detection requirements determine which neural network architecture gets 

selected for implementation. The Multi-Layer Perceptron (MLP) maintains a feedforward structure with 

complete connectivity, which enables successful application in tabular data classification and regression 

analysis. This model incorporates several hidden layers and activation functions between ReLU and sigmoid 

to detect sophisticated patterns in numerical data acquired from production lines [12]. 

The architectural distinctions between neural network models such as Multi-Layer Perceptron (MLP), 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer models 

highlight the varied applications and data processing capabilities of each structure. MLP is primarily utilized 

for tabular data classification and regression through fully connected layers, while CNNs specialize in 

extracting spatial features from images using convolutional filters. RNNs and LSTM networks analyze 

sequential data to identify temporal patterns, making them effective for sensor data analysis and time-series 

predictions. Transformer models integrate attention mechanisms to process multimodal data, enhancing defect 

detection through simultaneous image, sensor, and log data analysis. The following diagram illustrates the 

structural differences among these neural network architectures and their specific roles in defect prediction.  

 

Figure 2. Structural distinctions among neural network architectures used for defect prediction  
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Figure 2 illustrates the structural distinctions among four neural network architectures commonly applied in 

defect prediction systems: Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent 

Neural Network (RNN), and Transformer. MLP consists of fully connected layers for tabular data processing, 

facilitating regression and classification tasks. CNN employs convolutional and pooling layers to extract 

spatial patterns in image data, making it effective for visual defect detection. RNN processes sequential data, 

capturing temporal dependencies within sensor readings or time-series data. Transformer architecture 

integrates attention mechanisms and feedforward layers to analyse multimodal data, enabling comprehensive 

defect prediction by fusing image and sensor data streams. The visual image underlines how each architecture 

reports distinct data types and prediction tasks, strengthening the rank of choosing the suitable network 

structure based on data features and predictive objectives. 

CNNs signify the primary choice for recognising defects in images. The aptitude of CNNs to detect significant 

image features through convolutional filters makes them suitable for recognising electronic component 

defects, bonding errors, and surface irregularities [13]. These networks' prompt visual data processing 

capability makes them perfect tools for engineering applications through automated optical inspection (AOI) 

systems. RNNs and LSTM networks aid the analysis of consecutive data such as sensor readings and machine 

logs. These architectures perceive temporal patterns, which allows them to forecast failures and defects 

through the analysis of manufacturing condition historical trends [14]. A hybrid and transformer-based model 

objects to expand the efficiency of defect prediction systems. RNNs work together with CNNs in hybrid 

strategies for analysing manufacturing data, counting spatial and temporal patterns [7]. The latest transformer 

models have arisen because of their attention mechanisms. They are now utilised for multimodal defect 

detection through the combination of image and sensor and production log data, yielding better predictions 

[15]. 

The defect prediction outline for electronics manufacturing includes numerous stages encompassing the entire 

production process, from material quality checks to final product inspection. Each stage demonstrates 

potential defect formation points, influenced by numerous operational factors such as temperature variations, 

machine calibration, and conveyor speed variations. The subsequent schematic diagram demonstrates the 

simulated production environment, stressing on the key manufacturing process stages and the factors that 

contribute to defect occurrence. This image is a reference for realising how data is collected at each stage and 

how definite conditions influence the defect formation (Figure 3). 

 

Figure 3. Diagram concerning the simulated electronics manufacturing environment 

Figure 3 summaries the simulated manufacturing environment, providing a complete summary of key 

production stages and related defect formation factors. The material inspection recognises initial quality 

discrepancies, while constituent placement and bonding stages are disposed to to misalignments and solder 

bridging due to machine calibration and timing errors. Assembly and testing stages concern the detection of 

structural defects, with automated optical inspection (AOI) as a critical point for visual defect detection. The 

data collection stage influences sensor networks to screen environmental variables such as temperature, 
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humidity, and vibration, providing important data for succeeding defect analysis. This organised depiction 

elucidates the production system and underlines the importance of data incorporation for precise defect 

prediction in electronics manufacturing systems. 

Data preprocessing is a critical step in defect prediction. It guarantees the consistency and quality of data 

before feeding it into neural network models. The preprocessing pipeline comprises several key phases such 

as image resising, normalisation, and feature extraction, which jointly optimise the data for practical analysis 

by neural networks. Figure 4 demonstrates the sequence of data preprocessing steps, providing a pure outline 

of how raw data is changed into structured inputs ready for model training and defect analysis (Figure 4). 

 

Figure 4. Data preprocessing stages diagram in defect prediction 

Figure 4 outlines the consecutive stages of data preprocessing, emphasising the rank of data constancy and 

quality before model training. Primarily, the raw data is collected from manufacturing sensors and visual 

inspection systems, followed by a data cleaning phase that removes outliers and unrelated passes. Image 

resising adjusts data dimensions to ensure uniform input sizes, while normalisation scales values to an average 

range to improve neural network training constancy. The data increase addresses a class inequity by 

artificially generating additional data through rotation, flipping, and brightness adjustments. The removed 

features, such as edges, textures, and defect patterns, are then organised into matrices or sequences, reliant to 

the model architecture. To finish, the data is fragmented into training, validation, and testing subsections in 

order to prevent overfitting and safeguard robust model assessment. 

2.2. Comparison of methods 

The defects prediction is separated into three main classes: traditional statistical methods, classical machine 

learning, and deep learning techniques. The quality control arena has utilised regression analysis and 

Statistical Process Control (SPC) as statistical models as they offer easiness, interpretability, and forthright 

implementation methods. These models show restricted capability when processing non-linear data along with 

high dimensions, resulting in reduced performance in contemporary manufacturing settings [16]. Existing 

manufacturing applies employ machine learning methods composed of Support Vector Machines (SVM), 

Decision Trees, and Random Forests to overcome these limits. The models demonstrate better accuracy than 

statistical methods while effectively processing structured manufacturing information. These models need 

extensive feature engineering work, yet decision trees can develop overfitting issues when working with 

complex datasets, according to [17]. 

The development of deep learning produced two main prediction tools: Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTMs), which provide superior capabilities for identifying defects 

(Table 1). CNNs provide effective image-based defect detection because they automatically extract features 

from input images, making them suitable for identifying soldering errors, structural defects, and surface 
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anomalies in electronic components [18]. Real-time manufacturing implementation of CNNs faces challenges 

because these networks need enormous data collections alongside significant computational power. RNNs 

alongside LSTMs successfully predict defects throughout time sequences by extracting continuous 

interrelationships between production logs and sensor data [19]. The models successfully detect existing 

patterns in time series data and recognize meaningful trends that produce defects. Training deep RNNs 

becomes difficult due to their tendency to develop the vanishing gradient problem. LSTMs handle this issue 

effectively but need substantial training data and computational power [20]. 

Table 1. Comparison of defect prediction methodologies in the literature 

Ref. Methodology Dataset used Accuracy Key findings Limitations 

[17] Statistical Models 

(SPC, Regression 

Analysis) 

Industrial SPC 

logs 

78.5% Used for identifying 

process deviations in 

defect detection. 

Cannot handle high-

dimensional, non-

linear data. 

[18] Statistical Quality 

Control 

Automotive 

defect logs 

80.2% Effective in 

monitoring defects 

over time using 

regression models. 

Lacks adaptability 

to evolving 

manufacturing 

conditions. 

[20] Machine Learning 

(SVM, Decision 

Trees, Random 

Forests) 

Industrial 

sensor datasets 

85.3% ML-based models 

outperform statistical 

approaches in defect 

prediction. 

Requires manual 

feature engineering. 

[21] Decision Trees vs. 

SVM 

PCB defect 

dataset 

(Kaggle) 

87.1% 

(SVM) 

SVM achieves 

higher accuracy than 

decision trees in 

structured defect 

classification. 

Computationally 

expensive, may 

overfit. 

[22] Convolutional 

Neural Networks 

(CNNs) for Image-

Based Defect 

Detection 

PCB images 

(10,000 

samples) 

92.8% CNNs significantly 

improve defect 

detection accuracy in 

visual inspections. 

Requires large 

labeled datasets and 

computational 

power. 

[23] Deep Learning for 

Real-Time Defect 

Detection 

Factory AOI 

dataset 

(electronics) 

94.3% CNNs outperform 

traditional ML 

models in automated 

inspections. 

Model 

interpretability 

remains a challenge. 

[24] Recurrent Neural 

Networks (RNNs) 

& LSTMs for Time-

Series Defect 

Prediction 

Industrial 

sensor 

readings 

(multi-year) 

90.2% LSTMs improve 

sequential defect 

prediction based on 

sensor readings. 

Prone to vanishing 

gradient issue, 

requires large 

datasets. 

[25] Transformer-Based 

Defect Prediction 

Multi-modal 

defect dataset 

95.1% Attention 

mechanisms improve 

multimodal defect 

classification. 

High computational 

requirements. 

Integrating hybrid models and transformer-based architectures has attracted research interest because they 

successfully merge CNN and RNN capabilities. Predictive power increases through the combination of CNN-

RNN networks, which merge spatial and temporal dependency analysis. Transformer-based architectures 

implement attention mechanisms for enhancing accuracy when detecting defects by combining image and 

sensor data. New modeling approaches result in more complicated calculations, which need robust hardware 

systems for effective processing [21]. Selection of a defect prediction method relies on production data 

characteristics, system computing power, and system processing speed requirements. Deep learning models 

excel at accuracy, but their industrial deployment needs solutions to address computational speed, 

interpretation issues, and data collection problems [22]. 
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The progress made in developing defect prediction models has not solved multiple essential research 

problems. The main challenge stems from data imbalance within defect datasets because defective 

components occur much less frequently than non-defective ones. Neural networks tend to predict more non-

defective classifications than defective ones because of this unbalanced data distribution, which reduces 

theidentification of rare defects [23]. According to recent research findings, the exploitation of data 

augmentation techniques alongside synthetic defect generation methods fails to achieve accurate 

manufacturing variation replication.The current approaches to defect prediction suffer due to poor inclusion of 

multi-modal data. The accuracy of CNNs in detecting defects through images proves high, but their ability to 

process various sensor data alongside environmental conditions remains uncharted territory, according to 

research in [24]. The predictive power of AI systems can improve substantially when one model unites visual 

and non-visual defect signals from manufacturing operations. 

The main issue with deep learning models is their difficulty in interpreting model decisions. Current deep 

learning models based on CNN, RNN and transformer operate as inscrutable systems, which prevents 

manufacturing engineers from detecting faults when validating predictions. Highly regulated industries reject 

AI-driven defect detection systems because of their unexplainable operation, violating the core principles of 

transparency and accountability [25]. Most existing research studies evaluate their models through offline 

assessments. However, applied deployment in manufacturing facilities must address problems linked to 

computation speed, model adaptation, and real-time detection of manufacturing defects. Standardized 

benchmarking standards and publicly available defect prediction datasets are needed to enable proper model 

comparisons across various studies. Using industry-specific proprietary data in research prevents researchers 

from easily reproducing findings. Generating open-access datasets for еру defects evaluation together with 

standardised evaluation standards could foster better transparency for fair AI model assessment within defect 

prediction domains. 

3. Materials and methods 

3.1. Description of the simulation environment 

The imitation system presents standard electronics manufacture while mixing crucial operational factors that 

generate defects during the manufacturing. This process begins with material quality checks beforehand 

components are placed, linked and accumulated, and concluding product tests complete the sequence. The 

imitation includes significant production-related aspects like speed, temperature changes, humidity control, 

and equipment precision as they seriously affect defect creation. 

The simulated system works through surface mount technology (SMT) assembly, representing a popular 

electronic circuit board production approach. Real-world industrial defect rates serve as the basis for 

familiarising defects such as misalignment, solder bridging, component shifts, and insufficient solder paste 

application into the dataset. Diverse operator interventions, variable machine calibrations, and conveyor belt 

speeds serve as test conditions to broadly assess defect scenarios. The measured manufacturing setting permits 

scientists to review defect prediction models systematically. 

3.2. Data sources 

Natural and simulated data was used in the research in order to guarantee strong model presentation for 

training and assessment. 

● The key dataset originated from the NASA Prognostics Data Repository. The dataset included 

electronic system sensor data together with failure logs that provided crucial information for creating 

predictive models based on actual defects.  

● The PCBA Defect Detection Dataset from the Kaggle platform was incorporated in the study as an 

additional dataset. The dataset contained printed circuit board assembly (PCBA) images with 

annotations showing different manufacturing defects. 

● The process generated synthetic defects through data augmentation performs, which included image 

data improvements by reversing and spinning, and sensor anomaly simulation with Monte Carlo 

methods.  

The accumulated dataset contained over 10,000 samples separated into 85% non-faulty and 15% faulty 

components. Both structured sensor data and image data must undergo normalisation, noise filtering steps, and 

feature extraction preprocessing to prepare them for model training. 
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3.3. Tools and software 

A grouping of software design languages, machine learning frameworks, image processing libraries, and 

visualisation tools aids to concept, train, and evaluate the neural network model for defect prediction. The 

nominated tools support users to manage data resourcefully while permitting deep learning model 

development and performance testing, which leads to experiment duplicability. This Python version 3.x was 

used in this research as its primary language because it offered strong machine learning abilities, deep learning 

functions, and scientific computing modes. The neural network model application and training process used 

TensorFlow (v2.x) and PyTorch (v1.x) as programming frameworks. High-performance GPU acceleration 

joined with supple model architectures to bring built-in tools that support automatic differentiation and model 

disposition. 

OpenCV and the Python Imaging Library (PIL) served as the tools for image-based defect detection through 

their preprocessing functions, feature extraction, and growth steps. The libraries aid adapts images to 

grayscale while allowing operators resize and reduce noise and adjust contrast levels to enhance the model's 

capacity for detecting tiny defects in electronics. Structured manufacturing information processing and 

analysis needs using NumPy and Pandas in addition to Scikit-learn for sensor readings and production logs. 

NumPy provides fast numerical operations, Pandas gives data handling skills, and Scikit-learn helps with 

feature engineering functions, normalisation, and base machine learning model assessments. 

Physics-based defect simulations, which duplicate manufacturing defects such as solder misalignment and 

micro-cracks, are produced using MATLAB software for data increase and simulation resolutions. The 

Augmentor library improves data through rotation and flipping techniques, brightness adjustments, and 

Gaussian noise addition to improve the model’s reliability. Matplotlib and Seaborn allow for the generation of 

performance graphs, confusion matrices, and feature supplies during model training visualisation. Training 

insights become accessible through TensorBoard as it paths loss curves together with model performance 

metrics and training progress. The study implemented these tools and outlines to grow efficient deep learning 

models and attain high-quality data handling while applying robust evaluation methods, which improve AI-

driven defect prediction in electronics manufacturing. 

3.4. Neural network architecture 

The advanced model unites Convolutional Neural Networks (CNNs) for image-based defect recognition with 

Multi-Layer Perceptron (MLP) for sensor-based analysis. The joint utilisation of spatial defect patterns from 

images and numerical manufacturing data from sensors rises defect classification accuracy. The architecture 

of the hybrid CNN-MLP model mixes image-based defect recognition through Convolutional Neural 

Networks (CNNs) with sensor data analysis via Multi-Layer Perceptron (MLP). This incorporation allows the 

model extracting spatial defect patterns from images while simultaneously analysing sensor data in order to 

identify hidden anomalies that may not be visually visible. Figure 5 demonstrates the structure of the hybrid 

model, stressing the interaction between CNN and MLP mechanisms and their respective roles in defect 

recognition. 

 
Figure 5. Thorough architecture of the hybrid CNN-MLP model for defect detection 
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Figure 5 outlines the building of the hybrid CNN-MLP model, representing the incorporation of image-based 

and sensor-based data processing mechanisms. The CNN module obtains input images and extracts spatial 

features utilising convolutional and pooling layers, flattening the data for additional study. Simultaneously, 

the MLP component processes numerical sensor data through fully connected layers to detect patterns not 

evident in visual data. The concatenation layer merges the outputs of both components, forming a unified 

feature vector that undergoes further processing in hidden layers to detect complex defect patterns. The final 

output layer provides defect classification, enabling the model to identify defective and non-defective 

components through multimodal data analysis effectively. 

3.4.1. CNN component (image-based defect detection) 

CNN module analyzes PCB images to identify defects, including misalignment problems, solder bridging and 

cracking issues. The system architecture contains the following structure: 

● Input Layer: Preprocessed images of PCB components (224×224×3). 

● Convolutional Layers: The four convolutional layers use ReLU activation with 3×3 kernels to perform 

hierarchical feature extraction. 

𝑋𝑐𝑜𝑛𝑣 = 𝑓(𝑊 ∗ 𝑋𝑖𝑛𝑝𝑢𝑡 + 𝑏)          (1) 

Where 𝑋𝑐𝑜𝑛𝑣is the input image, W represents the convolutional filter, * denotes the convolution operation and 

is the bias term 

Pooling Layers: MaxPooling (2×2) after each convolutional block to reduce dimensionality while retaining 

essential features: 

𝑋𝑝𝑜𝑜𝑙𝑒𝑑=(𝑋𝑐𝑜𝑛𝑣)           (2) 

● Dropout Layers: Applied after convolutional layers (rate: 0.3) to prevent overfitting. 

● Flatten Layer: Converts the feature maps into a fully connected format for integration with MLP. 

3.4.2. MLP component (sensor-based defect prediction) 

The MLP module is a data processor for structured sensor data involving temperature, humidity, and machine 

vibration measurements that strongly impact electronics production defects. The MLP module processes 

numerical sensor data to forecast hidden defect patterns that the CNN component cannot detect visually. The 

MLP module exists as a combination of an input layer followed by multiple hidden layers before reaching the 

output layer. The MLP module receives numerical features from the input layer, representing sensor 

measurements obtained from the manufacturing setting. The features enter into multiple fully connected layers 

to generate progressively deeper feature representations. Three fully connected layers form the hidden section 

with 128, 64, and 32 neurons. The Rectified Linear Unit (ReLU) activation function used by each neuron in 

the model enables the detection of complex relationships existing in the data by applying non-linearity. Each 

hidden layer transformation follows the following definition: 

ℎ𝑖 = 𝑓(𝑊𝑖𝑋𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑏𝑖)         (3) 

The selection of ReLU activation allows faster convergence and better generalization because it prevents the 

vanishing gradient problem during training. The Softmax activation purpose alters the output layer forecasts 

into probabilities across multiple defect categories. 

The Softmax function implements output probability sums to one, which allows the model calculating 

confidence scores for each defect type. The function allows the system classifying defects simultaneously, 

allowing manufacturers to create effectual quality control significances. The hybrid deep learning model 

positively measures spatial defects from images and numerical patterns from sensor readings through its MLP 

module, making it an effective tool for real-world manufacturing defect predictions. 

3.4.3. Optimisation and training 

Deep learning techniques optimise the learning process of the hybrid CNN-MLP model to attain effectual and 

strong performance through the training. The training process necessitates selecting a loss role, an 

optimisation algorithm, and termination rules for overfitting prevention and better generalisation results. The 

multiple defect categories in the classification task need the Categorical Cross-Entropy loss function. The 
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function regulates how well predicted class chances match actual labels by identifying prediction errors, 

which helps the model minimise such errors. The loss is computed as: 

𝐿 = −1 ∑

𝑁

𝑖=1

∑

𝐶

𝐽=1

𝑦𝑖,𝑦𝑙𝑜𝑔Ŷ𝑖,𝑦          (4) 

Where N is the number of training models, C is the number of defect classes, 𝑦𝑖,𝑦 is the real class label (one-

hot encoded). The Categorical Cross-Entropy loss function helps the model identifying the correct defect 

category by assigning high probability, enhancing classification precision. During training, the Adam 

(Adaptive Moment Estimation) optimiser adjusts the model weights efficiently.  

Monitoring the training and validation harm curves over multiple epochs offers critical understandings into 

the model's learning dynamics. The Categorical Cross-Entropy loss function helps minimising the prediction 

errors, while the Adam optimiser ensures adaptive weight adjustments through the training process. 

Employing an early stopping strategy avoids overfitting by halting training when further epochs fail to 

decrease the validation loss. Figure 6 visualizes the training and validation loss curves over 50 epochs, 

illustrating how the model's performance stabilises and when the early stopping criterion is activated. 

 
Figure 6. The training and justification loss over epochs 

The loss curves establish the model's learning behaviour through the training process. The training and 

validation losses decrease steadily during the preliminary epochs, representing successful learning and weight 

alterations. The authentication loss curve flattens as training progresses, suggesting the model is approaching 

optimal presentation. Applying early stopping prevents further training when the validation loss fails to 

decrease, thus mitigating overfitting and enhancing the model's generalisation ability in real-world defect 

prediction scenarios. 

3.4.4. Simulation procedure 

The experimental procedure followed a structured approach in order to ensure accurate defect prediction 

utilising a neural network model. The simulation is designed to replicate real-world electronics manufacturing 

environment, incorporating data generation, preprocessing, model training, and evaluation to attain consistent 

results. The experimental procedure for defect prediction in electronics manufacturing surveys a systematic 

sequence of stages, from initial setup to data generation, preprocessing, model training, and evaluation. Each 

stage guarantees the neural network model precisely identifies defects based on multimodal data inputs. The 

following block diagram offers a complete overview of the simulation procedure, obviously demonstrating the 

flow of data and the interconnections amid each stage in the investigational process (Figure 7). 

The block diagram effectively summarizes the experimental development for defect prediction utilising a 

hybrid CNN-MLP model. The initial setup involves calibrating the simulated production environment, 

ensuring that sensor and imaging systems accurately capture data reflecting real-world manufacturing 

conditions. Data generation follows, producing image and sensor data as the foundation for model training. 

Preprocessing stages standardize data inputs through cleaning, resizing, and feature extraction, thus preparing 

the data for neural network analysis. During model training, the CNN-MLP architecture processes image and 

sensor data to detect defect patterns, with the Adam optimizer adjusting weights to minimize prediction errors. 

The evaluation phase quantifies model performance using key metrics, including accuracy, precision, and 
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recall. At the same time, the final analysis interprets the results to determine the model's effectiveness in 

identifying specific defect types and mitigating false positives. 

 

Figure 7. The simulation procedure diagram for defect prediction 

3.4.4.1. Initial simulation setup 

The simulation platform duplicates the Surface Mount Technology (SMT) assembly line, a standard 

electronics manufacturing process. The simulation platform incorporates component installation, soldering, 

and final examination under environmental test conditions, which incorporate temperature changes and 

humidity levels, among other parameters, conveyor speed, and machine precision irregularities. The control 

factors influence defect formation to produce data that accurately represents manufacturing operations. The 

simulation includes common industrial production defects, such as solder bridging, misalignment, 

tombstoning, and insufficient solder paste application. High-tech virtual detectors track machine function 

constantly, and advanced camera systems take high-quality images to analyze component defects (Figure 8). 

 

Figure 8. Proposed model simulation process for defect prediction 

3.4.4.2. Data generation 

The research dataset comprises real-world datasets and synthetic data that enhance the original information 

collected in this study. The research uses real-world data from the NASA Prognostics Data Repository and the 

Kaggle PCBA Defect Detection Dataset, which provides sensor data and failure logs, and annotated printed 

circuit board assembly images with manufacturing flaws, respectively. The data sets contain essential 

information about manufacturing defects along with production irregularities. 

Additional data is created through data augmentation techniques alongside Monte Carlo simulations to support 

real data and handle issues with unbalanced classes. The diversity of defect samples is expanded through 

image augmentation techniques, which apply rotation, flipping, brightness adjustments, and Gaussian noise 

addition. The dataset collection process includes synthetic versions of sensor measurements across 
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temperature ranges, humidity conditions, and machine vibration levels to cover diverse failure possibilities. 

The compiled dataset includes more than 10,000 elements that maintain an 85:15 split between standard and 

defective components for achieving balanced neural network training. 

3.4.4.3. Data preprocessing 

The neural network training process requires data preprocessing of the collected dataset to improve accuracy 

and efficiency. The process for image data includes three steps: first, resizing every image to 224x224 pixels, 

then normalizing them to a range between 0 and 1, before converting them to grayscale to improve feature 

extraction capabilities. The structured sensor data receives treatment through interpolation methods that 

handle missing values while Min-Max Scaling normalizes numerical readings to achieve uniform feature 

attributes. The categorical defect labels receive one-hot encoding treatment to match the model format. A 

systematic model evaluation method is established through the dataset partition, where training takes up 70%, 

while validation and testing each acquire 20% and 10%, respectively. 

3.4.4.4. Model training 

The neural network model receives training through TensorFlow and PyTorch platforms through a combined 

architecture that blends CNNs for imaging defect recognition and MLP systems for sensor information 

processing. The CNN section of the system evaluates PCB images to retrieve essential information before 

sending it to the MLP engine, which performs structured sensor data assessment to identify potential defects. 

The Adam optimizer runs the model training at a learning rate 0.001 during 50 epochs with each batch 

containing 32 samples. Implementing dropout layers with a rate of 0.3 and L2 regularization controls 

overfitting. The training stops automatically after validation loss fails to improve for five consecutive epochs 

through the implementation of early stopping. The model demonstrates excellent behavior when processing 

unknown defect patterns while avoiding unnecessary dependency on training data patterns. 

The model evaluation requires testing it against data that has not been part of the training process. The 

assessment of model effectiveness depends on accuracy metrics and precision, together with recall and F1-

score measurements that evaluate the classification performance. A confusion matrix helps researchers detect 

classification errors while demonstrating which classes the model incorrectly assigned. The robustness of the 

model is validated by examining both the Receiver Operating Characteristic (ROC) curve analysis and the 

Area Under the Curve (AUC) score evaluation, which provides a detailed threshold classification assessment. 

The neural network’s performance is compared with traditional methods like Support Vector Machines 

(SVM), Decision Trees, and Random Forests. The deep learning-based approach outclasses traditional 

methods by delivering superior accuracy and higher reliability when detecting defects. The systematic 

simulation methods enable research outcomes to become reproducible, thus making them suitable for 

electronics production environments. 

4. Evaluation metrics and statistical analysis  

Several classification metrics enable objective performance evaluation of the neural network when 

used for defect prediction. A model's overall performance for accurately classifying defective and 

non-defective products is the primary metric known as accuracy. Since the distribution of defective 

to non-defective examples in defect detection is unbalanced, the evaluation needs precision, recall 

and F1-score metrics and accuracy to achieve a comprehensive assessment. Precision determines the 

number of correctly identified defective components among all predicted defects. At the same time, 

recall establishes how well the model detects existing defects from the total defective components in 

the sample. The F1-score represents a balanced performance measurement method that calculates the 

harmonic mean between precision and recall, particularly when one class group dominates the 

dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
              (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
              (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
              (7) 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
              (8) 

The analysis of classification robustness uses both the Receiver Operating Characteristic (ROC) curve and the 

Area Under the Curve (AUC) score for evaluation purposes. The ROC curve exhibits the relationship between 

actual positive detection rate (recall) and misidentification rate at different classification threshold levels. The 

model achieves better overall defect versus non-defect discrimination when the AUC score reaches higher 

values. A confusion matrix generates valuable information about misclassification patterns, which enables the 

identification of particular defect types needing more optimization. 

𝑡 =
𝑋1 − 𝑋2

√
𝑆12

𝑛1
+

𝑆22

𝑛2

                   (9) 

ANOVA (Analysis of Variance) isa statistical validation tool because it evaluates how different 

hyperparameter settings and architectural choices perform with the model. The statistical test enables 

researchers to evaluate whether the noted differences between accuracy, precision, and recall measurements 

are statistically significant. The proposed neural network uses a t-test to evaluate its performance against 

traditional machine learning methods, including SVM and Decision Trees, to determine if deep learning yields 

substantial improvements. Performance metric confidence intervals are produced through bootstrapping 

methods to validate the evaluation's stability. 

5. Results and discussion 

The experimental outcomes are presented as tables, graphs, and visual diagrams to showcase essential results. 

Research monitors changes in loss and accuracy levels throughout multiple epochs while displaying them 

through line graphs during the training and validation phases. The quantitative assessment of model 

effectiveness includes a summary table that presents accuracy measures, precision, and recall alongside the 

F1-score. The model's predictive accuracy can be evaluated through scatter plots, which show how well it 

predicts actual defect occurrences versus its predictions (Table 2). 

Table 2. Proposed model comparison with other models 

Metric CNN-MLP Hybrid model SVM Decision tree 

Accuracy 94.7% 85.3% 82.1% 

Precision 92.5% 81.7% 79.5% 
Recall 90.8% 78.4% 76.2% 

F1-Score 91.6% 80.0% 77.8% 

The hybrid CNN-MLP model performs better than traditional machine learning methods for defect prediction 

tasks. The model's learning process can be monitored by following its leading performance indicators across 

various training sessions. The model demonstrates effective learning behavior by decreasing training and 

validation loss, which avoids overfitting patterns. Early stopping criteria can be implemented after epoch 40 

because the accuracy curve reaches stability. Changes in classification threshold analysis demonstrate an 

improved quality of defect detection while keeping false positive results minimal. The confusion matrix 

reveals specific details about how the model performs concerning classifications. The neural network model 

can identify critical defects because it obtains substantially better results than SVM and decision trees when 

detecting these defects (Figure 9). 

 
Figure 9. Result comparison 
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The interpretability of the model’s performance increases due to multiple visual aids that show classification 

effectiveness and error patterns. The Receiver Operating Characteristic (ROC) curve and a confusion matrix 

heatmap provide a visual representation of how well the model predicts results (Figure 10).The True Positive 

Rate versus False Positive Rate relationship tracks across different threshold values using ROC curve analysis 

to assess how well multiple classification models perform. The model demonstrates better discriminatory 

power regarding defective and non-defective components through its AUC score. The combination of CNN 

and MLP produces a model with 0.96 AUC, which surpasses the performance of SVM and Decision Trees 

since they deliver lower AUC results (Figure 11).  

 

Figure 10. Confusion matrix heatmap 

 

Figure 11. AUC-ROC curve 

The CNN-MLP model can better differentiate between defective and non-defective components, thus making 

it an ideal selection for automated quality control systems.This article uses a confusion matrix heatmap to 

understand how well the model functions. This graphical display reveals misclassification patterns that point 

out particular defect categories that tend to produce classification errors. Defects in the form of minimal solder 

inconsistencies sometimes end up being identified as non-defective parts by the model, although false 

favorable rates remain low. The model shows a strong ability to detect major defects, yet subtle soldering 

variations require supplementary optimization of detection precision.The research uses interpretability-

focused visualizations to make the CNN-MLP model decision processes transparent, which enables its 

adoption as an essential tool for manufacturing environments that require explainable and reliable systems. 

The study demonstrates the proposed CNN-MLP hybrid model produces outstanding results by bringing 

94.7% correctness, surpassing the rates of 85.3% for SVM and 82.1% for decision trees. The presentation 

metrics of the hybrid CNN-MLP model establish its superior accurateness and defect detection capability 

when associated to traditional methods such as SVM and Decision Trees. By mixing spatial feature extraction 

through CNN and sensor data study via MLP, the proposed model attains higher accuracy, recall, and F1-

score, underlining its robustness in recognising defective components. The next bar chart visually compares 
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key performance indicators — accuracy, precision, recall, and F1-score — for the CNN-MLP, SVM, and 

decision tree models, exemplifying the distinct benefits of the hybrid approach in defect detection tasks. 

The model attains its superior presentation because CNN extracts spatial imperfection patterns from images 

and MLP analyses sensor data while making an consolidative defect detection system. The detection 

capability of the model between defective and non-defective components is demonstrated by its AUC score of 

0.96. The deployment issues of real-time operation in deep learning systems exist because of two main 

limitations: computational speed and understanding how the model makes its predictions. The simulation 

authenticates real-world production scenarios, but further validation on current production lines will establish 

the model's reliability within dynamic production environments. 

Several prior research studies dealt exclusively with visual defect assessments or sensor data analyses, yet this 

study successfully combines various data types from different sources. Traditional SVM and decision tree 

algorithms demand substantial manual feature engineering work, but the CNN-MLP model automatically 

retrieves features without human assistance. The detection system faces two main challenges: uneven data 

distribution and the need for artificial data generation since natural defect patterns tend to be more elaborate 

than simulated ones. The high computational demands of deep learning models function as a barrier that 

prevents their use in low-power edge computing environments for deployment. Future research must focus on 

implementing model compression methods and optimization frameworks for real-time execution alongside 

interpretability techniques that enhance Industry 4.0 innovative manufacturing applications of AI-driven 

defect detection systems. 

A comprehensive summary of the model’s performance advantages and future development priorities is 

provided in Table 3. 

Table 3. Summary of key findings and future research directions 

Key findings  Future research directions 

High Accuracy (94.7%)  Develop model compression techniques to reduce 

computational demands for real-time deployment. 

AUC Score of 0.96  Implement interpretability-focused frameworks to 

enhance model transparency in defect classification. 

CNN-MLP Integration  Explore advanced hybrid architectures that 

incorporate transformer models for multimodal data 

analysis. 

Limitations in Real-Time Deployment  Apply hardware acceleration frameworks to facilitate 

model execution in edge computing environments. 

Data Augmentation Dependency  Investigate synthetic data generation methods that 

better simulate real-world defect patterns. 

Interpretability Concerns  Integrate attention mechanisms to clarify decision-

making processes and reduce the black-box nature. 

The results summarized in Table 3 highlight not only the superior predictive capabilities of the CNN-

MLP model but also the principal technical barriers that must be addressed for practical industrial 

deployment. The issue of computational efficiency, for example, has been widely explored in 

domains where real-time operation of AI-driven systems is required under constrained hardware 

resources. Studies on energy-optimized architectures and sensor-embedded platforms suggest viable 

strategies for adapting such models to edge environments without significant accuracy trade-offs [35, 

36]. 

The reliance on synthetic data augmentation also calls for the development of more sophisticated 

simulation frameworks capable of better reproducing real-world defect variability. In manufacturing, 

as in biomedical and energy domains, researchers have stressed the importance of accurate physical 

modelling and hybrid sensor integration for improving the fidelity of training datasets [37, 38]. 
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Furthermore, the opacity of deep learning models remains a critical limitation, particularly in 

domains that demand explainable decision-making. Recent work on domain-specific interpretability 

frameworks and digital traceability of decision logic supports the integration of visual attention 

mechanisms and post hoc analysis tools to address these transparency requirements [39, 40]. Finally, 

the integration of multimodal architectures - combining visual, physical, and contextual data - has 

been recognized as a promising approach for enhancing predictive depth and resilience in dynamic 

systems [35, 41]. 

In light of these perspectives, the present study’s contribution lies in demonstrating not only the 

technical potential of a CNN-MLP-based defect prediction system but also outlining the 

interdisciplinary pathways—model design, hardware alignment, data realism, and interpretability -

along which future research should evolve. 

6. Conclusions  

The results of this study confirm that the proposed CNN-MLP hybrid model achieves substantial 

improvements in the accuracy of defect prediction in electronics manufacturing by effectively 

combining spatial analysis of visual data with structured sensor information. The model 

demonstrates a 94.7% accuracy rate and an AUC score of 0.96, significantly outperforming 

conventional classifiers such as SVM and Decision Trees. These outcomes validate the efficacy of a 

multimodal approach, where convolutional layers capture complex image-based defect features 

while the MLP module detects anomalies embedded in numerical production parameters. This 

architectural synergy not only enhances predictive performance but also alleviates the dependency on 

manual feature engineering, a critical bottleneck in classical machine learning pipelines. 

The alignment of findings with previous studies reinforces the broader relevance of hybrid neural 

network architectures in manufacturing contexts. However, the high computational complexity of the 

proposed model restricts its deployment in low-power or latency-sensitive environments, which 

highlights the importance of future research in optimizing model architectures for real-time 

application. The use of synthetic data, though beneficial for addressing class imbalance, may limit 

the generalizability of results when deployed under non-simulated, high-variability industrial 

conditions. Moreover, the inherent opacity of CNN-MLP systems remains a significant obstacle to 

adoption in highly regulated domains, where explainability is a prerequisite for trust and 

accountability. 

Given these findings, future research should concentrate on developing lightweight and 

computationally efficient versions of CNN-MLP models through pruning, quantization, and other 

model compression techniques. In parallel, hardware acceleration frameworks tailored for embedded 

and edge deployment should be explored to support the integration of such systems into actual 

production lines. Another critical avenue of investigation involves improving the interpretability of 

defect classification outcomes. Integrating attention mechanisms, visualization of intermediate 

feature maps, and explainable AI modules will be essential to support transparent decision-making 

processes. Finally, the construction of standardized, open-access multimodal defect datasets will 

facilitate reproducibility and benchmarking across research efforts, advancing the field toward 

robust, scalable, and industry-compliant AI-driven quality control systems. 
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