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ABSTRACT   

Large language models have emerged as transformative tools in medicine and medical education, offering 

applications in aided diagnosis, automation of clinical assessments, and optimization of healthcare 

workflows. This article critically reviews 112 relevant publications analyzing the use of LLMs in these fields. 

It explores their applications in specific tasks such as biomedical classification, automated clinical 

assessment, medical question answering, medical report generation, and enhancement in medical education 

through exam simulation and personalized tutoring. Despite their advances, LLMs continue to face 

significant challenges, including data privacy issues, clinical validation, and algorithmic biases. However, 

their integration into clinical and educational settings demonstrates considerable potential to improve 

efficiency, accuracy, and accessibility in health care, provided these models adhere to technical and ethical 

rigor. This article offers a comprehensive overview for healthcare professionals and researchers who aim to 

adopt these models responsibly. 
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1. Introduction 

Large language models (LLMs) have emerged as one of the most disruptive technologies in artificial intelligence 

(AI) due to their ability to understand, generate, and interact with natural language in a highly contextual and 

accurate manner [1], [2]. Trained on billions of words, these models demonstrate outstanding performance in 

natural language processing (NLP) tasks, particularly in the biomedical domain, outperforming traditional, 

smaller, and more specialized models [3]. 

In the clinical context, LLMs applied to medicine demonstrate their usefulness in generating medical reports 

[4], formulating preliminary diagnoses [5], providing surgical assistance [6], answering clinical questions [7], 

and automating hospital workflows [8]. In addition, their ability to integrate with multi-modal data, such as 

images, video, physiological signals, or spoken language, extends their application to specialties such as 

radiology [9], ophthalmology [10], cardiology, and oncology [11], [12], as well as to specific AI-assisted clinical 

tasks such as extubating of ventilated patients [13]. 

In medical education, LLMs transform medical training through intelligent tools for exam generation and 

assessment [14], clinical simulation [15], personalized tutoring [16], and student performance analysis [17]. 

LLMs also support scientific writing and automated literature synthesis [4] and contribute to manuscript 

development [18], evidence review, and knowledge dissemination [8]. 

However, their adoption in real-world settings faces considerable challenges. These include the need to protect 

patient privacy, manage algorithmic biases, clinically validate their results, and address the ethical and legal 

implications of their use in medical decisions [19], [20], [21], [22], [23], [24]. These issues require a rigorous 

and systematic approach to ensure safe, effective, and equitable implementation. 

This article presents a comprehensive and critical review of the current state of LLMs in medicine, medical 

education, and healthcare. The analysis of 112 publications selected between August 2017 and May 2025 

addresses (i) their main applications in clinical, healthcare, and educational tasks; (ii) the datasets employed for 
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their development and evaluation; (iii) the performance metrics applied; (iv) prevailing challenges; and (v) 

possible technical and ethical solutions. The aim is to provide a comprehensive and accessible guide for 

researchers, healthcare professionals, and developers who seek to deploy LLMs in real-world settings 

responsibly. This review presents existing knowledge and supports the development and implementation of 

LLM-based applications in medicine by providing a foundation for others to build upon, thereby contributing 

to the design of more efficient solutions to real-world healthcare challenges. 

Previous surveys in the area include [25], [26], [27], [28], [29], [30], [31]. While Singhal et al. [25] focus on 

the clinical knowledge embedded within LLMs, and Thirunavukarasu et al. [26] provide a broad overview of 

medical applications, other works, such as those by Lucas et al. [31] and Sallam [27], emphasize educational 

uses and pedagogical concerns. Meng et al. [28] provide a scoping review primarily focused on mapping 

applications, whereas Tian et al. [30] discuss broader opportunities and challenges in biomedicine. Ethical 

aspects are addressed in detail by Haltaufderheide and Ranish [29]. Our work complements these surveys by 

providing a unified, systematic analysis across medical, healthcare, and educational contexts, covering 112 

studies and offering a comparative perspective across tasks, model types, and evaluation strategies, with an 

emphasis on practical deployment and domain-specific adaptation techniques. 

1.1. Methodology for the compilation of relevant publications 

This study has drawn on a systematic search of relevant literature in academic databases, including Springer, 

Elsevier, arXiv, and medRxiv, as well as other multidisciplinary sources. The review focuses particularly on 

developments that have emerged since the launch of ChatGPT [32] in November 2022, as well as other general-

purpose AI models adapted to the medical environment. A combination of terms associated with application 

domains and large language models guides the search strategy. The general search string used is: ("medical" 
OR "clinical" OR "health care" OR "medical education") AND ("large language 
model"). The initial review identifies many general review articles, but few include specific models directly 

applicable to the medical setting. Therefore, the search strategy is adjusted by replacing the generic term "large 

language model" with the particular names of LLMs, such as ChatGPT, BERT, LLaMA, and PaLM, among 

others, and combining these with terms from the medical domain. The selection of specific model names relies 

on references such as [1] and [3], as well as other recognized sources. This approach is based on the fact that 

many models designed for clinical tasks are derived from, tuned, or trained on general LLMs, which justifies 

their inclusion as part of the analysis. A detailed review of titles, abstracts, and keywords excludes papers that 

do not address specific medical, healthcare, and educational models. In addition, to provide a comprehensive 

view of the state-of-the-art, the analysis seeks to cover as many medical areas as possible, including clinical 

specialties such as ophthalmology, oncology, psychiatry, neurology, radiology, cardiology, and pediatrics. This 

thematic breadth enables the identification of general applications and highly specialized approaches to LLMs 

in different medical care and training scenarios. Finally, the review incorporates cross-sectional articles 

analyzing LLMs in healthcare to ensure comprehensive coverage. As a result, the study selects 112 articles 

closely related to its objectives. 

1.2. Scope, contributions, and structure of the document 

This review systematically explores the applications of LLMs in medical, healthcare, and medical education 

settings, considering their use in various clinical scenarios, specialized datasets, and the evaluation 

methodologies employed. It assesses their performance in different tasks and the main challenges faced in real-

world healthcare contexts. The main objective is to provide a structured, critical, and action-oriented guide for 

researchers, healthcare professionals, and developers who aim to apply LLMs in clinical and educational 

settings. 

The main contributions of this work are summarized as follows: 

▪ A comprehensive and updated review of state-of-the-art language models, highlighting their 

applications in different medical, healthcare, and educational scenarios. 

▪ The available scientific literature is categorized and analyzed, integrating relevant tasks, domains, and 

evaluation metrics to assess the performance of LLMs in biomedical settings. 

▪ Current challenges associated with using LLMs in medicine and healthcare are identified and classified, 

and possible solutions are proposed to address these open problems critically and prospectively. 

The rest of the paper is structured as follows: Section 2 presents the technical and conceptual background of 

LLM, covering its core architectures, the emergence of multi-modal models, and strategies for adapting them 
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to the biomedical domain. In Section 3, applications of LLMs in the medical, healthcare, and educational 

domains are discussed, covering tasks such as entity recognition, assisted diagnosis, biomedical prediction, 

automated clinical assessment, medical question answering, and clinical report generation. Section 4 describes 

the most commonly used metrics for evaluating the performance of these models in biomedical tasks. Section 

5 outlines the primary limitations and challenges associated with their implementation, including concerns over 

data privacy, the generation of misinformation, algorithmic biases, and ethical and legal issues. Finally, Section 

6 presents the study's conclusions and raises future perspectives for the responsible development of LLMs in 

healthcare. 

2. Background 

This section explores the fundamental concepts that underpin LLMs. It begins by describing the artificial neural 

network architectures that underpin these models, emphasizing the role of learned embeddings and the 

Transformer architecture. Furthermore, it explains how self-attention and multi-head attention enable LLMs to 

model complex linguistic structures. This background serves as a basis for understanding the capabilities and 

limitations of current LLMs, including phenomena such as hallucinations. It also explores how LLMs process 

multi-modal inputs, such as text and images, and how LLMs adapt to specific domains, like biomedicine, 

through prompt engineering, fine-tuning, instruction tuning, and retrieval-augmented generation (RAG). 

2.1. Large language models 

LLMs are machine learning models based on artificial neural networks (ANNs). These networks mimic how 

the human body organizes and processes information. ANNs comprise numerous "neurons" interconnected 

through several layers [33]. The first of these layers is the input layer, which receives data and transmits it to 

subsequent layers, where the model processes it according to its structure and parameters. One of the first 

approaches in this field was fully connected multi-layer networks, which served for years in deep learning 

models that do not process language but lay key technological foundations for developing LLMs. A fundamental 

challenge of these models lies in getting machines to learn from text when, in essence, machines only process 

numbers. To address this challenge, learned embeddings transform words into numeric vectors that capture their 

meaning and context. This allows terms with similar meanings to be placed close to each other within a 

mathematical space [34], [35]. However, an advanced architecture is required for a model to process these 

representations and capture more complex relationships in language. As such, Transformers function as efficient 

tools because Transformer architectures analyze several connections between words and generate contextual 

representations [36]. Additionally, it enables the capture of the syntactic and semantic structure of sentences. 

To achieve this, an embedding process is first performed, followed by positional coding, which helps identify 

word order within the input text. This allows the model to better understand the context and meaning of the 

processed information. One of the key mechanisms in Transformers is self-attention, which enables it to 

calculate attention scores for all possible word combinations [37]. To achieve this, it employs three learned 

matrices: Query (𝑄), Key (𝐾), and Value (𝑉), which are derived from linear transformations of the input. This 

mechanism can assign different weights to each word according to its level of importance and identify 

relationships between words, even when many others separate them within a text. The relationship between 

these elements appears in Equation 1. 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉  (1) 

where 𝑑𝑘 represents the dimension of the key vectors, the softmax function normalizes these values, allowing 

the model to generate a relevance score for each word relative to the others. The scores are weighted and 

combined for each word. Multi-head attention extends this process, allowing several attention sets to compute 

in parallel, which the model then concatenates and linearly transforms to obtain the final result. This multi-head 

processing enables the model to identify contextual relationships from different perspectives, improving the 

quality of the generated representations. The data then goes to an encoder, which transforms the words into 

vectors that capture the utterance's grammatical structure, meaning, and context. Each encoder layer applies 

multiple self-attention mechanisms and nonlinear transformations, allowing the information to be progressively 

refined until more abstract representations of the content emerge. Subsequently, a decoder consisting of multiple 

layers takes the processed information and converts it into a sequence of words. The model predicts the next 

word in a text and generates coherent responses. 
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However, despite the fluency and contextual coherence of the generated outputs, LLMs exhibit a phenomenon 

known as hallucination [38]. Hallucinations occur when a model produces content that is linguistically plausible 

yet factually incorrect or entirely fabricated. The occurrence of hallucinations in LLMs raises significant 

concerns for real-world applications, particularly in information retrieval (IR), medicine, and law, where factual 

accuracy and consistency are crucial. Unlike earlier task-specific NLP systems, the open-ended nature of LLMs 

introduces distinct challenges for controlling and detecting hallucinations, necessitating new evaluation 

methods, mitigation strategies, and model grounding [39]. 

Current LLMs present variations on this structure and differ in their training methods. Generally speaking, the 

BERT (Bidirectional Encoder Representation from Transformers) model does not follow a unidirectional 

approach to predict the next word in a sentence [40]. Instead, BERT trains the model with randomly hidden 

words and learns to anticipate them based on the visible context surrounding them. Some notable 

implementations of LLMs include LLaMA and LLaMA-2 from Meta [41], GPT-4 from OpenAI [42], PaLM 

and PaLM-2 from Google Research [43], and DeepSeek-R1 from DeepSeek [44]. Additionally, models 

developed by Google Research include T5 [45] and BERT [40]. These models adapt to both general tasks, such 

as conversational assistants, and more specialized uses, for example, in generating answers for medical queries 

[5], [46], [47], [48], [49]. 

2.2. Multi-modal LLMs 

Multi-modal LLMs represent a groundbreaking advance in the development of AI and NLP. Unlike traditional 

models, which are limited to text analysis and generation, multi-modal LLMs process and combine content from 

multiple formats, such as images, audio, and video. This enables them to better adapt to real-world situations 

and provides more accurate and contextually relevant responses. Integrating this type of content facilitates 

interaction between people and technology, leading to the application of these tools in various fields, such as 

medical education, research, and healthcare [3]. 

2.2.1. Applications and operation of multi-modal LLMs 

Advances in multi-modal LLMs drive the development of applications in multiple fields. In this context, Visual 

ChatGPT functions as a tool that integrates images and text to answer complex questions more accurately [50]. 

Similarly, models such as BLIP-2 employ the Qformer mechanism, designed to integrate visual and textual 

information, allowing for improved interaction between the two formats [51]. In tasks such as Visual Question 

Answering (VQA), multi-modal LLMs interpret images and generate answers based on their content. In the 

biomedical domain, some models are specifically designed for processing medical language, such as 

MedPaLM-2, which is based on PaLM-2, a model trained on diverse data that has the potential to integrate 

textual information with medical images [49]. Similarly, architectures such as BioGPT and PubMedGPT, 

developed for analyzing clinical and scientific texts, can be complemented with multi-modal techniques to 

improve the interpretation and generation of medical reports [10], [52], [53]. 

Multi-modal LLMs feature an architecture composed of modules that work together to process information from 

various input sources. Figure 1 shows a general framework for handling multiple input modalities, including 

images, audio, video, and text. Text is already in the LLMs space and can be processed directly. In contrast, 

other modalities are first passed through a Modality Encoder, which transforms them into modality-specific 

embeddings, such as numerical representations of images, audio, or video vectors. These embeddings are then 

passed through an Aligner, which projects them into the same space as the language model, allowing unified 

processing. Once aligned, all inputs, regardless of modality, exist as vectors within a shared representation 

space. This enables the LLMs to perform reasoning and understanding in a unified manner. From this point, the 

model can generate output text. Optionally, this output can be passed through an Output Decoder module, which 

converts the text into other formats such as images (Text2Img), audio (Text-to-Speech), or video (Text-to-

Video), depending on the application. In specific implementations, such as BLIP-2, additional modules, like Q-

Formers, are used to generate learnable queries that enhance information extraction from visual inputs. 

Likewise, some models incorporate Multi-Layer Perceptrons (MLPs) for intermediate processing or Multi-Head 

Attention (MH-Attn) mechanisms to improve the model’s ability to identify patterns and relationships within 

multi-modal data. 

One of the most recent innovations in developing multi-modal LLMs is the incorporation of the Mixture of 

Experts (MoE) architecture, which demonstrates significant improvements in performance and efficiency [54]. 

This approach relies on multiple specialized submodels (experts) trained to address specific tasks or modalities, 

such as visual recognition or NLP. Only the experts most relevant to the task are activated during inference, 
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enabling an efficient allocation of computational resources and reduced processing costs. Representative 

models, such as MoVA [55] and MoE-LLaVA [56], demonstrate that this strategy enhances accuracy in 

complex multi-modal scenarios and improves system scalability. Significantly, the benefits of the MoE 

architecture extend beyond multi-modal LLMs. Models such as DeepSeek-R1, which do not inherently operate 

in a multi-modal manner, also adopt this architecture to enhance specialization and computational efficiency. 

This demonstrates that MoE functions with a versatile design applicable across many LLM configurations [57]. 

Overall, the integration of MoE into multi-modal LLMs strengthens their adaptability and positions them as a 

robust solution for a wide range of applications in real-world environments, from human-machine interaction 

to dynamic multi-modal content generation [58]. 

 

Figure 1. The typical multi-modal LLM architecture, based on [3]. 

In summary, advances in multi-modal LLMs enable more seamless integration between different data types, 

greatly expanding their applicability in complex and specialized contexts such as biomedical. The evolution of 

architectures such as MoE represents an essential step toward more efficient, scalable, and accurate models. 

These innovations not only enhance the ability of systems to interpret heterogeneous information but also pave 

the way for new forms of human-machine interaction, solidifying the role of multi-modal LLMs as fundamental 

tools in developing intelligent and adaptive applications. 

2.3. Adaptation strategies for LLMs in the medical field 

The development of LLMs represents a key advance in artificial intelligence, especially in their generative 

branch. These models revolutionize NLP, unlocking new possibilities across multiple domains. In general terms, 

AI architectures that learn from large volumes of unlabeled data, enabling them to perform various tasks such 

as language understanding, text generation, and natural language interaction, are referred to as base models. 

Models such as GPT-3 and GPT-4, PaLM and PaLM2, and LLaMA and LLaMA 2 demonstrate the potential to 

perform complex tasks without domain-specific training [59]. These models also significantly impact the 

biomedical field, where AI plays a key role in analyzing clinical and scientific data. Models such as BioBERT, 

BioMedLM, PubMedGPT, and MedPaLM-2 are specifically designed to process medical information, 

facilitating tasks including the classification of biomedical texts, extraction of relevant information, and 

generation of clinical summaries [49], [53], [60], [61]. Similarly, BioBERT and PubMedBERT are trained on 

specialized biomedical corpora, whereas ClinicalT5 demonstrates its ability to generate summaries from real 

clinical data [62], [63]. 

One of the main features of these models is their self-supervised training capability, which allows them to 

identify patterns in large datasets without the direct intervention of specialists. This approach proves effective 

in models such as GatorTron, which trains on more than 90 billion words extracted from de-identified clinical 

records, allowing it to analyze medical information accurately [64]. Despite their potential, implementing these 

models in clinical settings poses significant challenges. While tools such as BioGPT and PubMedGPT facilitate 

automation in biomedical research, their integration into healthcare systems requires adjustments to ensure their 

reliability and applicability in real-world settings [52]. 

Depending on the available data, goals, and technical resources, various strategies serve to adapt LLMs in the 

medical domain. These adaptation methods include: 
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▪ Prompt engineering, where carefully crafted inputs guide the model’s behavior without changing 

parameters. This is particularly useful when fine-tuning is not feasible [65]. 

▪ Fine-tuning updates the model’s weights using domain-specific datasets, enabling deep customization. 

This approach is also featured in models such as BioMedLM and MedPaLM-2 [66]. 

▪ Instruction tuning, where the model trains on examples of instruction-following tasks tailored to clinical 

language or workflows [7]. 

▪ Adapter layers and parameter-efficient methods, such as LoRA or PEFT, introduce small, trainable 

components into the frozen base model, which proves particularly helpful in resource-constrained 

environments [67]. 

▪ RAG augments the model with real-time access to external biomedical documents, improving accuracy 

without modifying the model [68]. 

These techniques prove essential in customizing LLMs for biomedical tasks, where precision, contextual 

sensitivity, and safety remain critical. While tools like BioGPT and PubMedGPT already enhance workflows, 

deploying such systems in clinical practice remains challenging, especially regarding validation, privacy, and 

trust. 

2.4. Fine-tuning LLMs for the medical field 

Developing and customizing LLMs enable significant advances in clinical and biomedical tasks. These models, 

refined through various fine-tuning strategies, address specific functions in the medical domain, including 

medical entity recognition, clinical question answering, and scientific document analysis. Table 1 presents some 

specifically adapted models to the medical field, including their tasks, base model, adaptation method, training 

data, size, and release date. 

Table 1. LLMs in the medical field 

Model Tasks 
Base 

Model 

Adaptation 

Method 

Training 

Data 
Size 

Release 

Date 

BioELMo 

[69] 

Named Entity 

Recognition (NER) 

and Biomedical 

Text Classification 

ELMo 
Pretraining 

from scratch 

10M recent 

abstracts (2.46B 

tokens) from 

PubMed 

~93M 2019 

BioBERT 

[60] 

NER, Biomedical 

Questions, and 

Semantic Analysis 

BERT-Base Fine-tuning 

BooksCorpus + 

Wikipedia + 

PubMed 

110M Jan-19 

PubMedBERT 

[62] 

Relation Extraction 

and Medical 

Document 

Analysis 

BERT-Base 
Pretraining 

from scratch 

PubMed abstracts 

only (3.1B words, 

21GB) 

110M Jul-20 

BioMegatron 

[70] 

Predictions in 

Medical Texts 
Megatron 

Pretraining 

from scratch 

PubMed abstract + 

PMC full-text 

(6.1B words) 

345M Nov-20 

KeBioLM 

[71] 

Medical 

Terminology 

Analysis 

BERT-Base 
Pretraining 

from scratch 

PubMed abstracts 

+ UMLS-linked 

entities (3.5M 

docs) 

110M Apr-21 

ELECTRAMed 

[72] 

Biomedical 

Information 

Classification and 

Extraction 

ELECTRA 
Pretraining 

from scratch 

28.7M PubMed 

abstracts (~4B 

words, 26GB) 

- Apr-21 

GatorTron 

[64] 

Medical Records 

Processing 
BERT 

Pretraining 

from scratch 

>90B words of de-

identified clinical 

texts (PubMed + 

Wikipedia + 

MIMIC-III) 

Up to 

8.9B 
Feb-22 
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BioGPT 

[52] 

Specialized 

Medical 

Conversation 

GPT-2 
Pretraining 

from scratch 

15M PubMed 

abstracts (~4B 

words) 

347M Nov-22 

BioMedLM 

[61] 

Biomedical Text 

Generation 
GPT-2 

Pretraining 

from scratch 

PubMed abstracts 

and full articles 

(34.6B tokens) 

2.7B Dec-22 

PubMedGPT 

[53] 

Biomedical Text 

Generation 
GPT-2 

Pretraining 

from scratch 

PubMed abstracts 

and full articles 
2.7B Dec-22 

ClinicalT5 

[63] 

Automatic Clinical 

Summarization 
T5-Base Fine-tuning 

MIMIC-III 

clinical notes 

(~2M documents) 

220M Dec-22 

MedPaLM 

[49] 

AI-Based Medical 

Assistance 
PaLM-540B 

Instruction 

tuning 

MultiMedQA 

(Diverse medical 

data) 

540B Dec-22 

MedPaLM-2 

[49] 

AI-Based Medical 

Assistance 
PaLM 2 

Instruction 

tuning + 

ensemble 

prompting 

MultiMedQA 

(Diverse medical 

data) 

- May-23 

EriBERTa 

[73] 

Clinical Text 

Processing 
RoBERTa 

Pretraining 

from scratch 

Spanish & English 

corpora (PubMed 

+ MIMIC-III + 

EMEA) 

- Jun-23 

BioMistral 

[74] 

Advanced 

Biomedical Text 

Processing 

Mistral-7B 

Instruct 
Fine-tuning 

PubMed Central 

(3B tokens) 
7B Feb-24 

Medical mT5 

[75] 

Multilingual 

Medical Text 

Generation and 

Comprehension 

mT5-Base Fine-tuning 

3B words from 

PubMed + 

ClinicalTrials + 

EMEA 

738M Apr-24 

2.5. IA agents based on LLMs 

AI agents represent a significant evolution in the use of LLMs. Unlike models that generate responses, agents 

operate autonomously, interact with multiple sources, execute complex tasks, and maintain long-running 

dialogues. These agents often combine LLMs with external tools, sequential reasoning capabilities, and context 

persistence, making them ideal for dynamic medical environments such as continuous clinical assistance [76], 

hospital system navigation [5], or personalized medical tutoring [16]. Despite their potential, the development 

and implementation of these approaches still present technical and ethical challenges that warrant further 

exploration. 

Recent studies, such as Almanac [77], ArgMed-Agents [78], and MedChatZH [7], have begun to explore this 

paradigm in medicine, demonstrating practical applications in automated clinical responses, therapeutic 

simulations, and specialized expert dialogues. 

3. Applications of LLMs in medical, healthcare, and educational contexts 

LLMs' advanced linguistic understanding and text-generation capabilities have a significant impact on various 

contexts, including medical, healthcare, and educational. In the medical care field, understood as clinical 

activities directly linked to disease diagnosis, treatment, and follow-up [79], LLMs serve as key tools for 

classifying and extracting biomedical relationships, supporting computer-aided diagnosis, automating clinical 
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evaluation, and generating medical reports [4]. LLMs can also summarize medical records, answer specialized 

questions, and recognize relevant entities in clinical texts. These applications enhance diagnostic accuracy and 

facilitate medical staff's clinical decision-making. 

In contrast, healthcare refers to the management and operation of healthcare services at the institutional and 

population levels [5]. In this context, LLMs demonstrate their usefulness by integrating into large-scale 

platforms to optimize workflows in hospitals and healthcare centers, reduce the administrative operational 

burden, and facilitate more agile, efficient, and patient-centered care. Their ability to automate bureaucratic, 

organizational, and logistical processes directly improves service quality, enabling healthcare professionals to 

devote more time to high-value clinical tasks. 

Finally, LLMs are revolutionizing formal medical training and patient-focused education. In the academic 

context, LLMs simulate professional assessments, explain complex clinical concepts, and offer personalized 

pedagogical support tailored to each student's level and needs. In parallel, these models also facilitate health 

education in the general population, enabling patients to understand their condition better and adhere to 

treatment. This versatility positions LLMs as a valuable tool for improving training and care processes. 

Table 2 summarizes some of the primary applications of LLMs in the medical, healthcare, and educational 

fields, as described in the functions above. 

Table 2. Applications of LLMs 

Medical Domain Healthcare Domain Education Domain 

▪ Biomedical relationship 

classification 

▪ Computer-aided diagnosis 

▪ Automated clinical evaluation 

▪ Medical report generation* 

▪ Clinical summary generation 

▪ Specialized question 

answering* 

▪ Medical entity recognition 

▪ Workflow optimization in 

hospitals 

▪ Automation of complex 

processes 

▪ Operational workload 

reduction 

▪ Improved service quality 

▪ Patient-centered care 

▪ Medical report generation* 

▪ Simulation of medical 

evaluations 

▪ Explanation of clinical 

concepts 

▪ Personalized educational 

support 

▪ Patient-targeted education 

▪ Improved understanding of 

treatments 

▪ Specialized question 

answering* 

Note. Items marked with * represent applications that are also relevant in other domains. 

3.1. LLMs for medical applications 

The development of LLMs enables their integration into various specialized medical tasks, where advanced 

linguistic processing and a deep contextual understanding of the clinical domain are required. These applications 

range from the automated extraction of relevant information from electronic health records to the generation of 

assisted diagnoses, from the classification of mental disorders in social networks to the multi-modal analysis of 

medical images and natural language [67], [79], [80]. 

Given the highly sensitive, technical, and contextual nature of medical language, many recent works opt for 

specific approaches that prioritize semantic accuracy and clinical relevance. This section presents some of these 

studies selected for their direct applicability in real medical settings, exemplifying how current models support 

clinical work, optimize diagnostic processes, or contribute to medical decision-making. Although the sample 

remains limited, it responds to a deliberate criterion of focusing on uses linked to the medical field without 

losing sight of the fact that the ecosystem of health applications is considerably broader and more diverse. Table 

3 presents specific characteristics of the approaches used in each work, including the type of model, year of 

publication, and medical area of application. This table provides a complementary summary of the works 

reviewed, enabling us to identify methodological trends and the clinical domains covered by the analyzed 

studies. 
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Table 3. Summary of studies applying LLMs to clinical tasks in medical specialties 

Ref. Model Year Medical Area 

[81] ClinicalBERT 2019 
Internal medicine and 

hospital management 

[82] ChatGPT + Isabela Pro 2023 Ophthalmology 

[83] GPT-4 2023 Ophthalmology 

[84] CHiLL 2023 Multispecialty 

[85] Trap-VQA 2023 Pathology 

[86] GPT-4 + InstructGPT-3 + LLaMA 2023 Psychiatry 

McInerney et al. [84] present CHiLL, a method based on the Flan-T5 language model to automatically extract 

interpretable clinical features from medical notes and chest radiographs. This approach allows the unsupervised 

identification of relevant clinical features, facilitating more transparent and reliable medical predictions, 

especially in estimating hospital readmissions within 30 days. On the other hand, in mental health contexts, 

Yang et al. [86] use advanced models such as GPT-4, InstructGPT-3, and LLaMA to analyze social network 

posts, demonstrating that specific prompt engineering strategies significantly improve the detection of emotions, 

depression, anxiety, and suicide risk. This work highlights ChatGPT's ability to provide explanations and its 

near-human performance in clinical interpretations. Furthermore, Balas and Ing [82] compare ChatGPT with 

Isabel Pro in ophthalmological diagnoses, reporting that ChatGPT correctly identifies specific diagnoses in 9 

out of 10 cases, significantly outperforming Isabel Pro's accuracy. Likewise, Ćirković and Katz [83] evaluate 

GPT-4 in clinical classification to determine patient eligibility for refractive surgery, obtaining promising 

results. This work highlights the potential of GPT-4 to aid in complex medical decisions informed by clinical 

data. For their part, Huang et al. [81] propose ClinicalBERT, a model specifically trained to predict hospital 

readmissions from structured clinical notes in internal medicine and hospital management settings. Finally, 

Naseem et al. [85] developed Trap-VQA, a visual-linguistic system based on Transformers that answers medical 

questions about pathological images. This approach increases predictive accuracy and provides interpretable 

explanations, which is crucial for clinical adoption in complex visual diagnoses. Although this selection 

represents only a fraction of the reviewed literature, it follows a specific criterion focused on applications 

directly related to the medical field. This delimitation enables a more nuanced understanding of how specific 

technological solutions are designed to intervene in clinical, diagnostic, and hospital processes, distinguishing 

them from other, more general, or cross-cutting works in digital health. 

3.2. LLMs for healthcare applications 

One of the most widespread applications of LLMs in the biomedical field is structuring information from 

unstructured clinical language. This task involves processes such as the automatic recognition of medical 

entities, the classification of clinical concepts, and the extraction of relationships between them. Together, these 

techniques enable the transformation of free text in medical records, scientific literature, or social forums into 

organized representations that feed clinical decision-support systems [76], specialized search engines [87], or 

predictive models [88]. 

As these models become more sophisticated, their applications in healthcare grow significantly, enabling 

complex clinical tasks to be addressed with greater accuracy, reasoning power, and contextualization. This 

section examines five key areas where LLMs demonstrate relevant impact in the healthcare environment. First, 

clinical entity recognition, biomedical relation extraction, and classification are introduced and developed in 

Section 3.2.1. Subsequently, in Section 3.2.2, computer-aided diagnosis receives attention, highlighting the use 

of models to simulate clinical reasoning and generate diagnostic explanations. Section 3.2.3 addresses 

automated clinical evaluation, including screening, therapeutic recommendation, and postoperative follow-up 

tasks. Section 3.2.4 presents advances in biomedical prediction to anticipate risks, disease progression, and 

clinical needs from textual and multi-modal data. Section 3.2.5 examines the application of models for 

addressing medical questions, with a focus on facilitating automated interaction between professionals and 

patients through natural language. Finally, Section 3.2.6 addresses report generation in the healthcare domain, 

analyzing how LLMs generate automated clinical documentation from both structured and unstructured data, 

with applications in specialties such as radiology, oncology, and internal medicine. 
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3.2.1. Recognition of entities, extraction, and classification of biomedical relations in healthcare 

The automatic recognition of entities and subsequent classification and extraction of biomedical relationships 

represents a fundamental step in structuring clinical information dispersed in electronic records, scientific 

literature, or social networks. These tasks enable the identification of relevant entities, such as diseases, 

symptoms, treatments, or social factors, and the establishment of semantic relationships, thereby optimizing 

analysis processes, clinical decisions, and epidemiological surveillance. In recent years, these areas have 

undergone significant transformation through the advancement of LLMs such as BERT, GPT, and T5, as well 

as their clinical variants. These models are applicable in multiple clinical settings, utilizing various architectures 

and methodologies. Table 4 presents specific characteristics of the approaches used in each work, including the 

type of model, year of publication, and medical area of application. This table provides a complementary 

summary of the reviewed works, allowing the identification of methodological trends and clinical domains 

covered by the analyzed studies. 

Table 4. Summary of studies applying LLMs to biomedical entity recognition and relation extraction tasks 

Ref. Model Year Medical Area 

[89] MentalBERT + MentalRoBERTa 2021 Psychiatry 

[90] LFBERT 2024 
Psychiatry and mental 

health 

[91] medBERT.de 2024 Multispecialty 

[92] DepGPT 2024 
Psychiatry and mental 

health 

[93] Pediatric Stroke GPT-3.5 2024 Pediatric Neurology 

[94] Flan-T5 XXL + Flan-T5 XL + GPT-3.5 + GPT-4 2024 
Oncology, Internal 

medicine, Radiotherapy,  

[95] GPT-3.5 Turbo 2024 Oncology, Pathology 

[96] GPT-4 API 2024 

Oncology, Internal 

medicine, Translational 

pharmacology 

[15] 
KLUE-RoBERTa + KLUE-BERT + KoBERT + 

KorBERT 
2024 Emergency medicine 

[97] BiomedRAG 2024 

Oncology, Internal 

medicine, Clinical 

pharmacology 

[98] AssistMED 2024 Cardiology 

[99] EHR-BERT 2024 

Cardiology, Internal 

medicine, Clinical 

pathology 

[100] CaseGPT 2024 

Internal medicine, Legal 

medicine, Clinical 

pharmacology 

[16] GPT-3.5 2024 
Endocrinology and 

otolaryngology 

[68] RECTIFIER 2024 Cardiology 

[101] MentaLLaMA 2024 Psychiatry 

[77] Almanac 2024 

Cardiology, Cardiac 

surgery, Neurology, 

Gastroenterology, 

Nephrology, Infectious 

diseases, Pediatrics 
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In the context of systematic reviews, GPT-4 integrates with the RAG architecture through LangChain to classify 

articles and extract biomedical data, including medical conditions and model architectures. This automation 

allows the structuring of key information in patient-clinical trial matching studies, facilitating the extraction of 

complex biomedical relationships in areas such as oncology, neurology, and rare diseases [96]. Similarly, Flan-

T5 XL and XXL models are trained by Guevara et al. [94] to extract social determinants of health (SDoH) from 

narrative clinical notes, encompassing categories such as employment, housing, transportation, parental status, 

relationships, and social support, derived from free text. These models facilitate the structuring of critical 

information that is poorly documented in electronic records, revealing semantic relationships between social 

factors and clinical profiles. 

In narrative clinical settings, ChatGPT demonstrates its ability to transform unstructured clinical notes into 

organized data [95], while AssistMED automates the extraction of diagnoses and medications from electronic 

records [98]. BiomedRAG structures multisource biomedical knowledge by integrating relevant entities in the 

contexts of oncology and internal medicine [97]. Models such as EHR-BERT are developed to identify 

anomalous clinical events within medical records [99], or CaseGPT extracts information from EHRs to generate 

clinical recommendations [100]. Fiedler et al. [93] developed Pediatric Stroke GPT (PS-GPT), a GPT-3.5-based  

model designed to extract clinical information from medical notes of pediatric stroke patients and automatically 

complete records for the International Pediatric Stroke Study (IPSS). 

In mental health, the LFBERT model applies to detect anxiety or suicidal ideation from text [90], revealing 

relationships between emotional language and psychological states. Ji et al. [89] developed MentalBERT, a 

model that classifies mental disorders based on social networks, while Yang et al. [101] proposed MentaLLaMA 

to categorize anxiety and depression. Models such as DepGPT identify depressive publications, connecting 

linguistic patterns with clinical variables [92]. Regarding medical entity recognition, models such as KoBERT 

and KLUE-BERT are employed by Lee et al. [14] to identify symptoms and clinical histories in simulated 

doctor-patient conversations during emergencies. The system enables automatic recognition of key clinical 

entities from natural language, showing its usefulness in supporting automated registration in triage settings. In 

German clinical texts, models such as medBERT.de are also used to identify diseases, medical devices, and 

clinical procedures. This adaptation to specialized medical language shows substantial improvements over 

general models, facilitating the automatic structuring of medical documents in hospital environments [91]. 

RECTIFIER was developed by Unlu et al. [68] to automate the extraction of inclusion and exclusion criteria 

from unstructured clinical notes, supporting participation in a study focused on patients with heart failure. The 

system analyzes clinical records using directed questions and semantic retrieval, determines patient eligibility 

with high accuracy and efficiency, and reduces the burden on staff in the screening process for clinical trials. 

Almanac, a GPT-4-based system for answering open-ended clinical questions, was also developed by Zakka et 

al. [77]. The model identifies key entities, such as diseases, interventions, and outcomes, and generates clinical 

answers by organizing explicit relationships between diagnosis, treatment, and prognosis. This structure enables 

the model to function as a reliable clinical assistant, providing accurate, verifiable, and error-resistant responses. 

ChatGPT is used by Sievert et al. [16] to extract relevant information about thyroid nodules from clinical reports 

and support diagnostic decisions. The model identifies textual patterns associated with the risk of malignancy 

and links clinical descriptions with therapeutic decisions, demonstrating its support for text-based risk 

stratification. 

These proposals demonstrate that the automatic recognition of clinical entities, followed by their classification 

and the extraction of biomedical relationships, establishes itself as a key sequence in applying LLMs in 

healthcare. The reviewed approaches reveal a broad spectrum of practical uses in multiple medical specialties, 

from the automated structuring of clinical notes to identifying social, psychological, and pathophysiological 

factors. The integration of these models enables the organization of large volumes of dispersed information and 

the inference of clinically relevant links, ultimately contributing to more accurate, personalized, and data-driven 

medicine. This convergence of language, clinical information, and intelligent systems marks a significant 

advance toward more efficient care environments and better-informed research processes. 

3.2.2. Computer-aided diagnosis in the healthcare field 

Computer-aided diagnosis represents a significant advance in the clinical setting, enabling improved accuracy 

and efficiency in disease identification by analyzing various data types. In recent years, LLMs such as GPT, 

BERT, and LLaMA have revolutionized this task, enabling automated clinical reasoning, generating structured 

diagnostic explanations, and integrating text with visual data. Table 5 presents specific characteristics of the 
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approaches used in each work, including the type of model, year of publication, and medical area of application. 

This table provides a complementary summary of the reviewed works, allowing the identification of 

methodological trends and clinical domains covered by the analyzed studies. 

Table 5. Summary of research on the use of LLMs in computer-assisted diagnosis tasks 

Ref. Model Year Medical Area 

[9] GPT-3.5 2023 Radiology 

[102] DR. KNOWS 2023 Multispecialty 

[67] 
PneumoLLM (LLaMA-7B + ViT-L/14 from 

CLIP) 
2024 Nephrology 

[103] GPT-3.5 2024 Ophthalmology 

[78] ArgMed-Agents 2024 Multispecialty 

[104] SkinGEN 2024 Dermatology 

[105] 
GPT-3.0 + GPT-4, with clinical-specific CoT 

prompts 
2024 Multispecialty 

A tool based on GPT-3.5 and GPT-4 was developed by Savage et al. [105] that simulates medical reasoning 

using prompts. The model represents processes such as differential diagnosis, intuitive analysis, and Bayesian 

inference, i.e., the ability to update diagnostic hypotheses based on new patient information and progressively 

evaluate disease probabilities. This generates a step-by-step explanation that improves interpretability in 

complex clinical settings. This focus on diagnostic transparency is complemented by [102], where DR.KNOWS, 

a system that incorporates medical graphs into LLMs to improve diagnostic accuracy from clinical notes, is 

proposed. The system predicts conditions such as sepsis or pneumonia by analyzing semantic paths between 

medical concepts extracted from text, thereby structuring more coherent diagnostic hypotheses. 

In the same vein, ArgMed-Agents, a multi-agent system that simulates clinical discussions using argumentation 

schemes, is presented in [78]. This tool evaluates treatments, generates counterarguments, and selects justified 

therapeutic options, contributing to the transparency and reliability of the medical decision-making process. 

This multi-modal approach is complemented by [103], where ChatGPT-3.5 is used to diagnose different types 

of glaucoma from clinical cases written in natural language. The model identifies relevant patterns in the text 

and generates consistent differential diagnoses, demonstrating a capability comparable to that of resident 

physicians, particularly in settings with limited access to specialists. 

Song et al. [67] propose PneumoLLM, a model that integrates computer vision with LLaMA to directly diagnose 

pneumoconiosis from chest radiographs, eliminating the need for textual input. This approach enables accurate 

diagnoses with limited data, making it useful in resource-poor clinical settings. In turn, SkinGEN, a 

dermatological diagnostic system that combines visual-linguistic models to analyze skin images, generate 

diagnoses, and produce explanatory visualizations, was developed by Lin et al. [104]. This strategy is purported 

to improve patient understanding and strengthen confidence in automated diagnosis. 

On the other hand, Rao et al. [9] evaluate ChatGPT's ability to select appropriate imaging studies in cases of 

breast pain and breast cancer screening. The tool demonstrates high accuracy when analyzing structured clinical 

questions, and its recommendations align with the American College of Radiology criteria, underscoring its 

usefulness in radiological clinical decision-making. These proposals reflect remarkable methodological 

progress: today's LLMs classify, explain, and reason. This capability extends successfully to multiple medical 

specialties, including pulmonology [67], dermatology [104], radiology [9], and general clinical care scenarios 

[78], [102], [103], [105]. The convergence between text, image, and structured medical knowledge points 

toward more accurate, explainable, and data-driven medicine. 

3.2.3. Automated clinical assessment in healthcare 

Integrating LLM models in the clinical setting enables the automation of traditionally complex tasks such as 

differential diagnosis, treatment selection, and complication assessment. These tools, trained with large volumes 

of biomedical and clinical text, interpret symptoms, generate reasoned explanations, and propose interventions 
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tailored to the patient's context. Several studies illustrate the scope and evolution of these technologies in real 

medical settings. Table 6 presents specific characteristics of the approaches used in each work, including the 

type of model, year of publication, and medical area of application. This table provides a complementary 

summary of the reviewed works, allowing the identification of methodological trends, medical specialties 

addressed, and the degree of integration between text, image, and structured clinical knowledge. 

Table 6. Summary of research on the use of LLMs in clinical assessment tasks 

Ref. Model Year Medical Area 

[18] GPT-3.5 2023 Psychiatry 

[106] Chatbot based on Facebook Messenger 2023 Oncology 

[8] GPT-4 2024 
Orthopedics and sports 

medicine 

[107] GPT-4 + Google Gemini 2024 Ophthalmology 

[108] GPT-3.5 Turbo 2024 Radiation oncology 

[109] GPT-4 + LLaMA Chat-2.0 (Meta AI) 2024 Otorhinolaryngology 

[17] GPT-3.5 Turbo + Google Bard (PaLM 2) 2024 Emergency medicine 

[110] 

GPT-3.5 Turbo + GPT-4 + GPT-3.5 Clinical 

Assistant + Aya-101 + Nemotron Clinical 

Assistant 

2024 Psychiatry 

[111] GPT-4 + Google Gemini Pro 2024 Plastic surgery 

[112] GPT-3.5 + GPT-4 + Bing AI (Microsoft) 2024 Ophthalmology 

[113] GPT-4 2024 Urological oncology 

[114] GPT-4 + Mixtral 8x7b 2024 Infectious diseases 

In mental health, Gargari et al. [110] compare multiple models, including ChatGPT-3.5, GPT-4, and specialized 

clinical models, for diagnosing mental disorders according to the Diagnostic and Statistical Manual of Mental 

Disorders, Fifth Edition (DSM-5) cases, highlighting the accuracy of GPT-3.5 and the argumentative robustness 

of GPT-4. Franco D’Souza et al. [18] evaluate ChatGPT-3.5 using 100 psychiatric clinical vignettes, where 

61% of the responses receive an "A" rating from experts. These proposals reflect the potential of LLMs as 

support tools in mental health screening, diagnosis, and follow-up. 

In the surgical and postoperative setting, Gomez-Cabello et al. [111] analyze the usefulness of several LLMs in 

generating recommendations after cosmetic surgeries, highlighting GPT-4 for its clinical depth. In addition, 

Hsueh et al. [113] studied the ability of GPT-4 to detect complications after renal surgery, achieving an 86.7% 

accuracy rate in identifying postoperative problems. For their part, Huang et al. [106] developed a chatbot for 

symptomatic follow-up during chemotherapy, reducing unplanned hospitalizations. These initiatives 

consolidate the role of LLMs in improving clinical monitoring and continuity of care in surgical and oncological 

scenarios. 

In emergency settings, Garg et al. [17] evaluate Bard and ChatGPT applying the START (Simple Triage and 

Rapid Treatment) protocol, where Bard shows greater accuracy under time pressure. An analogous approach is 

presented in [8], which utilizes GPT-4 to prioritize causes of knee pain in outpatient triage. Both studies 

highlight the use of LLMs to accelerate clinical classification processes and support decision-making under 

high-demand conditions. 
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On the other hand, Carlà et al. [107] evaluate ChatGPT-4 and Gemini in the context of surgical 

recommendations for glaucoma, observing greater consistency and accuracy in GPT-4, which reinforces its 

value as a support tool in ophthalmology. In the context of prevention and automated surveillance, 

Gopalakrishnan et al. [112] propose a personalized screening system for diabetic retinopathy tailored to 

individual clinical risk factors. Complementarily, Wiemken and Carrico [114] use GPT-4 and Mixtral in an 

RAG system to verify compliance with National Healthcare Safety Network (NHSN) clinical definitions, such 

as Central Line-Associated Bloodstream Infection (CLABSI) and Catheter-Associated Urinary Tract Infection 

(CAUTI). Both works demonstrate how language-based models support preventive and automated monitoring 

strategies in clinical settings with high operational burdens. 

In radiation therapy, Dennstädt et al. [108] studied the ability of GPT-3.5 to answer clinical questions. It 

performed well on closed questions, those with defined answers, such as dose indications or standard schedules. 

Still, it identified limitations when facing open questions, which require broader clinical reasoning, such as 

justifying the choice of treatment or adapting the decision to the patient's context. This contrast underlines the 

importance of integrating explicit medical knowledge in tasks that require contextual interpretation, clinical 

judgment, or individualized adaptation. 

Finally, Dronkers et al. [109] analyze therapeutic decision-making in bilateral vocal cord paralysis. ChatGPT 

and LLaMA 2 show partially correct but risky strategies, revealing the need for models trained specifically for 

highly specialized domains. 

Together, these works solidify the utility of LLMs in automating clinical assessments with applications in 

multiple medical specialties. The ability of these models to assess, reason, and personalize clinical 

recommendations suggests a paradigm shift toward more innovative, more accessible, and patient-centered 

medicine. However, clinical validation, bias management, contextual interpretation, and ongoing medical 

monitoring remain significant challenges. The future of these systems depends on their responsible integration, 

emphasizing explainability, equity, and patient safety. 

3.2.4. Biomedical prediction in the healthcare field 

Biomedical prediction seeks to anticipate risks, disease progression, and clinical needs based on textual and 

multi-modal information, playing a vital role in developing personalized, proactive, and data-driven medicine. 

In this context, models such as BERT, GPT-4, and specialized variants like Health-LLM or AD-BERT facilitate 

the integration of clinical language, enabling accurate and contextually informed predictions about a patient's 

condition and progression. Table 7 presents the characteristics of the approaches used in each work, including 

the type of model, year of publication, and medical area of application. This table complements the clinical 

prediction analysis, facilitating the identification of domains addressed and models adapted to the specific 

context of each task. 

Table 7. Summary of research on the use of LLMs in clinical prediction tasks 

Ref. Model Year Medical Area 

[5] KM-BERT 2023 Multispecialty 

[79] BERT + GPT-2.0 2023 Oncology 

[115] AD-BERT 2023 Neurology 

[88] GPT-4 2024 Cardiology 

[116] Health-LLM 2024 

Gastroenterology, 

Pulmonology, 

Endocrinology 

One of the most relevant approaches focuses on automated triage from the first point of contact. In this regard, 

KM-BERT is a pre-trained model developed by Kim et al. [5] for Korean medical texts, capable of identifying 

the most relevant medical specialty for patient care based on patients' self-reported descriptions of symptoms. 

The system, which encompasses 27 clinical areas, demonstrates how linguistic adaptation to the biomedical 

domain and everyday language substantially enhances efficiency in automated clinical referrals, particularly in 

high-demand or resource-limited settings. 
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Complementing this early classification approach, Mao et al. [115] developed AD-BERT, a model trained on 

unstructured clinical notes to predict conversion from mild cognitive impairment to Alzheimer's disease. This 

model stands out for its ability to anticipate longitudinal data contained in electronic clinical records. It provides 

a valuable tool for early detection in neurological settings, where time to intervention proves critical. 

Beyond traditional diagnosis, some studies address more subjective dimensions of care, such as patient quality 

of life. Mao et al. [79] explore this aspect through the combined use of BERT and synthetic data generated by 

GPT-2, applied to analyzing transcribed interviews of patients with thyroid cancer. This approach allows the 

identification of physical and emotional trajectories without relying on structured questionnaires, opening the 

door to non-intrusive monitoring systems focused on patient well-being. 

In internal medicine, Jin et al. [116] present Health-LLM, a model trained to predict disease in gastroenterology 

and endocrinology. Its strength lies in combining clinical feature extraction and contextual retrieval of medical 

knowledge, which allows it to surpass previous models in accuracy and diagnostic personalization. This 

integration between clinical reasoning and semantic text representation represents a key advance in automated 

medical decision-making. 

For its part, Han et al. [88] evaluate the performance of GPT-4 in predicting 10-year cardiovascular risk using 

data from multicenter population-based cohorts. The model demonstrates comparable performance to 

established tools, such as the Framingham scales or ACC/AHA guidelines, with the added advantage of 

maintaining accuracy in scenarios with incomplete clinical data, a critical feature in real-world healthcare 

settings. 

Together, these proposals demonstrate the growing sophistication of LLMs for clinical prediction tasks in 

various domains, including neurology, oncology, ophthalmology, cardiology, and internal medicine. These 

models no longer limit themselves to interpreting clinical language; LLMs now learn from it, anticipate disease 

trajectories, and propose personalized treatment plans. This convergence between artificial intelligence, 

language, and medical data opens new possibilities for predictive, accessible, and adaptive medicine. 

3.2.5. Answers to medical questions in the healthcare environment 

Generating automated clinical responses represents a strategic advance in patient-model interaction, with direct 

applications in counseling, health education, and initial screening. Answering medical questions accurately and 

with an evidence-based approach is essential to supporting patients and professionals. LLMs such as ChatGPT, 

Bard, and Med-PaLM 2 revolutionize this task by processing complex clinical text and generating accessible 

explanations. Table 8 summarizes the characteristics of work that applies LLMs to medical response tasks, 

organized by model, year, and specialty addressed. This table complements the analysis of responses to medical 

questions, facilitating the identification of domains addressed and models adapted to the specific context of each 

task. 

Table 8. Summary of research on the use of LLMs to answer medical questions 

Ref. Model Year Medical Area 

[89] MentalBERT + MentalRoBERTa 2021 Psychiatry 

[117] GPT-3.5 2023 
Gastroenterology and 

Hepatology 

[118] GPT-3.5 2023 Urology 

[119] GPT-3.5 + GPT-4 + Google Bard 2023 Ophthalmology 

[120] Bard AI + GPT-3.5 2023 Ophthalmology 

[121] GPT-3.5 2023 Multispecialty 

[49] Med-PaLM 2 2023 Multispecialty 
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Ref. Model Year Medical Area 

[122] EyeGPT 2024 Ophthalmology 

[66] 
GPT-3.5 + LLaMA2-7b + LLaMA2-7b-Chat 

+ LLaMA2-13b + LLaMA2-13b-Chat 
2024 Ophthalmology 

[123] 
GPT-3.5 + GPT-4 + Google Gemini 

(formerly Bard) 
2024 

Plastic Surgery 

 

[124] GPT-3.5 + Google Bard (now Gemini) 2024 Cardiology 

[125] Psy-LLM 2024 
Psychiatry and Mental 

Health 

[126] GPT-3.5 + Google Bard (now Gemini) 2024 
Spine Surgery and 

Traumatology 

[127] GPT-3.5 + GPT-4 2024 
Radiology and 

Cardiology 

[128] 

GPT-4 + Gemini (Google AI, formerly Bard) 

+ Microsoft Copilot (formerly Bing Chat) + 

ChatSpot (HubSpot) + PiAI (Inflection AI) 

2024 
Cardiology, Oncology, 

Dermatology 

[129] GPT-4 2024 Endocrinology 

[130] GPT-3.5 Turbo + GPT-4 2024 
Geriatrics and Cognitive 

Neuroscience 

[48] 
GPT-3.5 + GPT-4 + LLaMA-2-chat (7B and 

70B) 
2024 

Internal Medicine, 

Surgery, Neurology, 

Gynecology, Pediatrics, 

Pediatrics 

[131] Aeyeconsult 2024 Ophthalmology 

[7] MedChatZH 2024 
Traditional Chinese 

Medicine 

[68] RECTIFIER 2024 Cardiology 

[101] MentaLLaMA 2024 Psychiatry 

[77] Almanac 2024 Multispecialty 

One of the most consistent findings across studies is the ability of LLMs to generate clinically relevant responses 

with high levels of empathy. Ayers et al. [121] compare ChatGPT-3.5 responses with those of specialist 

physicians in response to real questions posed by patients in social forums. In an analysis of 195 exchanges, 

healthcare professionals rate the reactions and, surprisingly, prefer ChatGPT responses in 78.6% of cases. The 

model is 3.6 times more likely to produce "good or excellent" responses, which were nearly 10 times more 

empathetic. These results suggest a complementary role in asynchronous settings, such as clinical messaging or 

digital community care. This same pattern also appears in postoperative settings [123] and in chronic conditions, 

such as heart failure [124] or liver diseases [117], where the models exhibit high accuracy rates, albeit with 

limitations in actionability or in delivering clinical thresholds. 

In ophthalmology, specialized models are developed with outstanding results. EyeGPT, trained by Chen et al. 

[122] on a Chinese ophthalmic clinical corpus, outperforms generalist models such as ChatGPT-3.5 and 

HuatuoGPT in report generation tasks, technical explanations, and clinical support. Complementarily, Tan et 
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al. [66] evaluate five LLMs tuned with 400 real ophthalmological questions and observe that GPT-3.5 achieves 

an accuracy of 87.1%, although all models exhibit clinical errors and hallucinations. To improve traceability, 

Aeyeconsult by Singer et al. [131] uses GPT-4 and RAG architecture. It achieves an accuracy of 83.4% against 

OKAP-type questions, demonstrating higher stability and lower variability than ChatGPT-4. 

In mental health, Ji et al. [89] introduce MentalBERT and MentalRoBERTa, models specifically adapted for 

forum language, such as Reddit. MentalRoBERTa outperforms models such as BERT and BioBERT in 

detecting depression, anxiety, and suicidal risk. More recently, MentaLLaMA by Yang et al. [101], trained with 

the IMHI dataset, combines reinforcement learning and interpretable explanation generation, outperforming 

even GPT-4 in reasoning quality. In addition, Psy-LLM by Lai et al. [125] proposes a conversational approach 

in Chinese to provide psychological support with ethical and patient-centered responses. 

The use of LLMs extends to areas such as endocrinology and pregnancy [129], where ChatGPT-4 demonstrates 

high reliability but low readability, and urology [118], where limitations in consistency and source citation are 

identified. On the other hand, models such as Almanac [77] and RECTIFIER [68], based on GPT-4 with RAG 

architectures, demonstrate higher accuracy, efficiency, and traceability in open clinical responses and patient 

screening for trials, respectively. 

Comparative studies reflect apparent differences between models. ChatGPT-4 outperforms GPT-3.5 in 

accuracy, completeness, and consistency in several clinical tasks [119], [127], particularly in cardiac imaging 

and myopia. Sandmann et al. [48] confirm these advantages in diagnosis and clinical examination, with no 

statistically significant differences in therapeutic suggestions. However, even GPT-4 exhibits significant errors 

in rare diseases or with ambiguous prompts, necessitating ongoing clinical validation. 

From a technical point of view, models that integrate augmented retrieval, such as Aeyeconsult, RECTIFIER, 

and Almanac, prove to be more accurate and traceable. These approaches enable the citation of verified sources, 

such as PubMed or clinical textbooks [68], [77], [131], thereby reducing the risk of hallucination. Additionally, 

the proposal to utilize GPT-4 as an automated medical content evaluator [66] represents a significant step toward 

large-scale clinical validation. 

Despite progress, readability remains low for patients with low health literacy [129]. Clinical errors, 

hallucination, or information overload risks persist, even in the best-performing models [127], [128]. Adherence 

to official guidelines is still limited [118], which imposes barriers to their autonomous implementation. 

These proposals reflect a growing maturity of LLMs in medicine but also emphasize the need for regulated 

frameworks, human review, and more specialized developments. Models such as EyeGPT [122], AeyeConsult 

[131], MentaLLaMA [101], or MedChatZH [7] demonstrate that integrating structured sources and the 

multilingual approach enhances clinical utility. However, their adoption must consider their performance, 

ethics, traceability, and safety in genuine care settings. 

3.2.6. Clinical report generation in the healthcare environment 

The automated generation of clinical reports is another key area where LLMs demonstrate a relevant impact. 

These models enable the creation of medical reports from both structured and unstructured clinical data, thereby 

enhancing the efficiency, consistency, and quality of healthcare documentation. Table 9 summarizes the most 

representative works in this line, organized by model, year, and medical specialty. A variety of architectures are 

used, ranging from generalist models such as GPT-3.5 and GPT-4 to specialized variants like Radiology-

LLAMA2 or ChatCAD+, which are tailored to different clinical contexts, including radiology, oncology, 

internal medicine, and geriatrics. This compilation compares approaches and highlights the steady growth in 

using LLMs to automate specialized medical reports. 

Table 9. Summary of research on the use of LLMs in clinical report generation tasks 

Ref. Model Year Medical Area 

[63] ClinicalT5 2022 General Medicine 

[64] GatorTron 2022 General Medicine 

[12] GPT-3.5 2023 Radiation Oncology 
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Ref. Model Year Medical Area 

[132] ChatCAD+ 2023 Radiology 

[133] 
Claude-instant-v1.0 + GPT-3.5-Turbo + 

Command-xlarge-nightly + Bloomz 
2023 Multispecialty 

[134] Radiology-LLaMA2 2023 Radiology 

[46] GPT-4 2024 Radiology 

[47] ChatGPT + BART + T5 2024 Multispecialty 

[65] LLaMA 2 2024 
Internal Medicine, 

Surgery, Intensive Care 

[76] T5 + BART + RNN+LSTM 2024 Radiology 

[135] LLaMA 2 (13B) 2024 
Geriatrics and Clinical 

Nutrition 

 

One of the most relevant approaches in the literature focuses on utilizing LLMs for clinical report generation, 

with applications spanning general medicine to specialties such as radiology, oncology, and clinical nutrition. 

ClinicalT5, as introduced by Lu et al. [63], is one of the first models explicitly tailored to the medical domain, 

designed to generate clinical text, summarize medical notes, and classify clinical documents and records. This 

line of work evolves into more complex systems, such as the one developed by Wilhelm et al. [133], which 

combines Claude-instant-v1.0, GPT-3.5-Turbo, Command-xlarge-nightly, and Bloomz to generate automated 

therapeutic recommendations for clinical questions. 

In the hospital setting, LLaMA 2 by Goswami et al. [65] summarizes discharge reports, prioritizing clarity to 

facilitate understanding by other professionals. Similarly, Latif and Kim [47] propose a hybrid architecture 

integrating ChatGPT with BART and T5 to reformulate complex clinical texts using large-scale language 

models. For its part, Guckenberger et al. [12] use ChatGPT (GPT-3.5) to write scientific texts and generate 

research hypotheses in medical environments. 

Radiology remains one of the most explored areas. Liu et al. [134] developed Radiology-LLaMA2, a model 

designed for generating radiology reports and analyzing medical findings. In a similar vein, Gulati et al. [46] 

use GPT-4 to transform technical language into patient-friendly versions, suggesting a potential use in 

accessible clinical communication. Zhao et al. [132] present the ChatCAD+ proposal, which moves in this 

direction by applying models such as ChatGPT and LLaMA to generate reports directly from diagnostic images. 

A noteworthy technical approach is presented by López-Úbeda et al. [76], who evaluate a multi-modal 

architecture combining T5, BART, RNN, and LSTM for writing medical reports on knee MRI. Furthermore, 

Alkhalafin et al. [135] applied LLaMA 2 to generate reports and de-identify sensitive clinical data in geriatric 

patient records, striking a balance between accuracy and privacy protection. Finally, Yang et al. [64] introduce 

GatorTron, which is oriented toward processing electronic health records, with the ability to extract clinical 

concepts and map semantic relationships within texts. 

These studies reflect a consolidated trend toward integrating LLMs in clinical tasks beyond practitioner support, 

including generating understandable text for patients, report automation, image analysis, and ethical data 

management. Despite advances, challenges such as ensuring traceability, conducting clinical validation, and 

adapting to the local context remain. However, the progress made so far suggests a promising path toward more 

efficient, accessible, and personalized medicine through the strategic use of LLMs. 

3.3. Applications of LLMs in medical education contexts 

LLMs emerge as innovative tools across multiple fields, including health sciences education. Their ability to 

process large volumes of information, generate coherent content, and adapt to different contexts positions them 

as key resources in transforming teaching, learning, and clinical assessment [136]. This section examines how 

these models are applied in education through three primary applications. 
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Section 3.3.1 examines the application of LLMs in entity recognition, extraction, and classification of 

biomedical relationships, which is crucial for structuring medical knowledge and facilitating education. This 

technology enables the automated identification of clinical concepts and their interrelationships, supporting 

academic training by analyzing specialized texts. Subsequently, Section 3.3.2 focuses on automated clinical 

assessment and the generation of reports. In this context, LLMs aid in creating clinical simulations and 

questionnaires and generate educational reports that enhance feedback and strengthen students' diagnostic 

competencies. Finally, Section 3.3.3 explores the application of these models in addressing medical questions, 

highlighting their potential as virtual tutors that can resolve doubts, reinforce knowledge, and foster self-directed 

learning. From exam preparation to clinical case simulation, LLMs redefine how knowledge is accessed and 

transmitted in medical education. These three areas represent a significant evolution in utilizing artificial 

intelligence to enhance educational processes, providing scalable, personalized, and evidence-based solutions. 

3.3.1. Recognition of entities, extraction, and classification of biomedical relationships in the field of 

education in medical contexts 

Several research efforts focus on entity recognition, information extraction, and classification in biomedical 

texts, which are essential for enhancing information quality and supporting both educational and research 

processes. Table 10 summarizes the characteristics of each model, including year and specialty. This table 

complements the analysis of entity recognition, extraction, and classification of biomedical relations, facilitating 

the identification of domains addressed and models adapted to the specific context of each task. 

Table 10. Summary of research on using LLMs for applications in the educational domain, entity recognition, 

extraction, and classification of biomedical relationships 

Ref. Model Year Medical Area 

[71] KeBioLM 2021 Multispecialty 

[137] Chat-ePRO (based on ChatGPT-3.5 Turbo) 2024 Oncology 

[138] GPT-3.5 2024 
Gynecology and 

Urogynecology 

Progress in biomedical language processing advances through the development of models that combine 

precision, automation, and contextual understanding, generating direct implications for health sciences 

education. A conversational system that interacts directly with users is introduced in the context of data 

collection in educational and clinical settings. Based on generative language techniques, it improves 

participation, enriches the patient-student learning experience, and maintains content accuracy, demonstrating 

its usefulness as a pedagogical tool in patient-centered education [137]. Complementarily, there is a need to 

identify texts generated by AI, especially in academic contexts. Automatic systems outperform human 

evaluators in this task. This reinforces the need for reliable tools to preserve academic integrity, particularly in 

the development of papers, essays, and scientific publications within educational environments [138]. Finally, 

biomedical LLMs integrate structured knowledge from ontological systems [71]. By incorporating this type of 

information, the model achieves superior performance in concept recognition and complex relation extraction 

tasks, facilitating its application in specialized educational platforms and continuing education environments 

where semantic precision and contextual understanding are essential. This work reflects a steady evolution 

toward more autonomous, accurate, and interpretable models, which improve clinical and scientific systems and 

positively transform teaching, assessment, and learning strategies in the biomedical domain. 

3.3.2. Automated clinical assessment and reporting in education settings 

With the rapid advancement of language models, the methods by which medical training processes are evaluated 

and receive support are evolving. A significant body of work explores their applicability in automated clinical 

assessment, demonstrating their potential to assist in preparing medical and surgical examinations. Table 11 

summarizes the characteristics of the works, organized according to model, year, and specialty addressed. This 

table complements the analysis of automated clinical evaluation and report generation in education, facilitating 

the identification of the domains addressed and models adapted to the specific context of each task. 
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Table 11. Summary of research on the use of LLMs for automated clinical assessment and report generation in 

the educational domain 

Ref. Model Year Medical Area 

[139] BioBART 2022 Multispecialty 

[52] BioGPT 2023 Multispecialty 

[140] ChatGPT 2023 General Medicine 

[141] GPT-3.5 2023 Neurosurgery 

[142] Med-HALT 2023 Multispecialty 

[14] 
Bing Chat (Microsoft) + GPT-3.5 + Bard 

(Google) + LLaMA 2 (Meta) 
2024 Multispecialty 

[143] GPT-4 2024 General Surgery 

[144] 

GPT-3.5 + GPT-4 + Gemini (Google AI) + 

LLaMA 2 (Meta AI) + Copilot (Microsoft, GPT-4 

Turbo-based) 

2024 
Oral and Maxillofacial 

Surgery 

[145] 
GPT-3.5 + GPT-4 + Bard (Google) + Bing Chat 

(Microsoft, GPT-4-based) 
2024 Dentistry 

[146] GPT-4, Bing (Microsoft), and Bard (Google) 2024 Bariatric Surgery 

Developing biomedical LLMs promotes new ways to support health sciences education. These models automate 

clinical assessment and generate helpful content for training, facilitating learning across different levels and 

medical specialties. 

Quah et al. [144] evaluate ChatGPT, Gemini, and Copilot for answering certification exam questions in oral 

and maxillofacial surgery, obtaining promising results in terms of accuracy and usefulness as a study tool. 

Similarly, Lee et al. [146] discuss their application in the training of bariatric surgeons, highlighting how these 

models facilitate both autonomous learning and preparation for high-level assessments. For its part, Tsoutsanis 

and Tsoutsanis [14] address the use of multilingual models to support the preparation of medical exams across 

multiple specialties, including internal medicine, psychiatry, and gynecology. This study reveals that, in many 

cases, the performance of the models equals or exceeds that of doctors in training, which reinforces their 

usefulness as an educational resource. 

In the dental field, Yamaguchi et al. [145] explore their use in preparing national exams for dental hygienists in 

Japan, confirming their effectiveness as a complementary tool in technical and professional training. In addition, 

Beaulieu-Jones et al. [143] investigate the performance of ChatGPT-4 in general surgical training, noting its 

ability to replicate and even surpass human clinical reasoning on standardized tests. Further work [141] 

combines automated assessment with report generation, focusing on neurosurgical clinical questions. It 

highlights the clarity of the answers generated and their consistency against established medical sources, 

positioning it as a didactic and feedback resource for students. Other studies focus on the use of models for 

developing educational and clinical reports. Pal et al. [142] propose using models to reduce hallucinations in 

medical texts, thus improving the reliability of the content generated for academic contexts. Along the same 

lines, [139] and [52] utilize specialized models, such as BioBART and BioGPT, to produce summaries of 

medical documents, simulate clinical dialogues, and synthesize information, which is practical in case-based 

training contexts. Finally, Eysenbach [140] proposes educational applications, such as generating clinical 

simulations, questionnaires, and assisted article writing, that integrate AI as an active resource in the teaching 

and learning process. This work evidences a growing trend towards incorporating LLMs in medical educational 

environments, not only as assistants in clinical assessment but also as facilitators of autonomous learning, 

critical thinking, and academic production. 
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3.3.3. Answers to medical questions in the field of education 

Utilizing LLMs in education unlocks new opportunities for enhancing comprehension, self-learning, and 

personalized education in the health sciences. Several proposals show that these models can effectively assist 

in answering medical questions, conducting clinical training, and developing professional competencies. Table 

12 summarizes the characteristics of the works, organized according to model, year, and specialty addressed. 

This table complements the analysis of medical question-answering in the educational setting, facilitating the 

identification of domains addressed and models adapted to the specific context of each task. 

Table 12. Summary of research on using LLMs for answering medical questions in the educational domain 

Ref. Model Year Medical Area 

[61] BioMedLM 2022 Multispecialty 

[19] GPT-3.5 2023 Ophthalmology 

[147] ChatGPT 2023 Urology and Oncology 

[148] HuaTuo, based on LLaMA-7B 2023 General Medicine 

[149] GPT-4 2023 Ophthalmology 

[150] GPT-3.5 2023 Multispecialty 

[151] GPT-3.5 + GPT-4 2023 Ophthalmology 

[11] Bing (Microsoft) 2024 
Cardiology and Emergency 

Medicine 

[74] BioMistal 7B 2024 Multispecialty 

[87] GPT-4 2024 Oncology 

[152] ChatGPT 2024 Gynecologic Oncology 

[153] AI-guide bot (based on ChatGPT-3.5) 2024 Oncology 

[154] GPT-3.5 + GPT-4 2024 Cardiology 

[155] 
GPT-3.5 + GPT-4 + Google Bard + Bing Chat 

(Microsoft) + Claude + Sage 
2024 Dentistry 

[156] GPT-4 + Bard (Google) + Bing Chat (Microsoft) 2024 Anesthesiology 

[157] GPT-4 2024 Neurology 

[158] Xiaoqing (based on ChatGLM-6B) 2024 Ophthalmology 

[159] ChatDiet 2024 Nutrition 
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Utilizing LLMs in education unlocks new opportunities for enhancing comprehension, self-learning, and 

personalized education in the health sciences. Various studies show that these models can effectively assist in 

answering medical questions, conducting clinical training, and developing professional competency. 

BioMedLM, designed by Lee et al. [61], answers biomedical questions in either free-form or multiple-choice 

format, serving as a versatile resource to reinforce knowledge across multiple clinical areas. Similarly, 

BioMistal 7B proves helpful in clinical text analysis, with educational applications focused on interpreting 

unstructured medical information and training medical students' critical reading and synthesis skills [74]. 

On the other hand, ChatGPT has been extensively evaluated in various studies. For example, [150] and [151] 

explore its ability to solve clinical questions in ophthalmology. Furthermore, [19] tests its use with the 

Ophthalmology Clinical Competency Examination (OKAP), highlighting its usefulness as a structured student 

review tool. Coskun et al. [147] expand the focus to combined specialties such as urology and oncology, 

evaluating their performance in simulated clinical scenarios. Alternative models, such as HuaTuo [148] and 

Xiaoqing [158], show potential as multilingual educational assistants, providing general medical information or 

focusing on specific conditions, such as glaucoma or diabetes, while adapting to different cultural and linguistic 

contexts. In general medical education, [149] and [157] discuss ChatGPT's ability to provide accurate and 

helpful answers in diverse clinical contexts, including neurology. 

In nutrition, Yang et al. [159] introduce ChatDiet, a model focused on dietary habits and personalized 

recommendations aimed at preventive education. Other work, focusing on preparing students and professionals 

to interact with patients [154], examines the use of ChatGPT for clinical report writing and improving 

communication skills in cardiology. Likewise, Birkun and Gautam [11] evaluate Bing Chat in emergency 

medicine settings, highlighting its usefulness for clinical reasoning under pressure. In surgical and specialty 

areas, works such as those of [152], [156], and [155] analyze combined models (including ChatGPT, Bard, 

Bing, Claude, and Sage) in anesthesia, gynecology, and dental education. These works underscore the value of 

multilingual and multi-modal models as comprehensive tools in advanced clinical and educational settings. For 

its part, Lee et al. [153] present the AI-guide bot, a tool based on ChatGPT-3.5 oriented to oncology education. 

This model generates patient simulations, questionnaires, and automatic feedback on clinical understanding, 

integrating it as a pedagogical resource in active learning environments. Finally, Wei et al. [87] apply ChatGPT-

4 in similar tasks, showing its ability to accurately answer clinical questions related to oncology and serve as 

simulated clinical decision support for advanced learners. These works reflect a clear trend: LLMs not only 

answer medical questions with remarkable accuracy but also position themselves as valuable tools in medical 

education by facilitating autonomous learning, exam preparation, clinical case simulation, and improved 

evidence-based decision-making. 

4. Evaluation metrics 

Rigorous performance evaluation of LLMs is crucial for their safe and practical application in medical settings. 

Due to the inherent complexity and sensitivity of clinical settings, evaluation metrics must capture both technical 

accuracy and the semantic validity and contextual relevance of the responses generated. The most commonly 

employed metrics include ROUGE, BERTScore, and BLEU, which aim to compare textual responses generated 

by the model and reference responses for classification or clinical decision tasks. Accuracy, precision, recall, 

and F1-score are used to quantify the model's ability to identify relevant medical entities, diagnoses, or 

symptoms correctly. In addition, some researchers propose more specialized measures, such as medical concept 

coverage (MCC) [160], which evaluates whether the model adequately includes critical clinical concepts such 

as diseases, treatments, organs, or denied conditions. This metric is particularly relevant in scenarios where 

omission of information may affect patient safety or quality of service. 

On the other hand, given the risks associated with generating erroneous or misleading clinical content, there is 

a need for metrics designed to assess potential harms. Roy et al. [161] present the average number of unsafe 

hits (AUM), a measure designed to estimate the probability that a model produces clinically dangerous, 

inappropriate, or serious health consequences for the patient. This metric allows a quantitative assessment of 

the potential negative impact of the model when confronted with medically sensitive questions. 

Given the potential for bias, hallucinations, and unsafe outcomes in LLMs applied to the medical domain, any 

evaluation process must consider overall performance, clinical feasibility, ethical risk, and the model's ability 

to operate within acceptable margins of error in healthcare. In this context, Table 13 synthesizes the evaluation 

metrics used in various works, providing a comparative view of the methodological approaches employed to 

assess the performance of LLMs in healthcare-related tasks. 
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Table 13. Summary of evaluation metrics used in different LLM research studies 

Metrics Description Research papers 

ROUGE 

Evaluates the quality of generated text by comparing 

the overlap of words or phrases with reference texts. 

It is commonly used to assess the output of LLMs in 

summarization and text generation tasks. 

[7], [47], [65], [76], [125], [160], 

[162], [163], [164], [165], [166] 

BERTScore 

Measures semantic similarity between texts using 

representations from models such as BERT. It helps 

evaluate whether LLMs capture the intended 

meaning beyond surface-level matching. 

[47], [76], [112], [162], [165], 

[166], [167] 

BLEU Scores 

Calculates the n-gram precision between the 

generated text and a reference, commonly used in 

machine translation. It helps measure how accurately 

LLMs reproduce expected sequences in generation 

tasks. 

[7], [65], [76], [168], [169] 

Accuracy 

The proportion of correct predictions over the total 

number of predictions made and applied to evaluate 

classification performance in tasks handled by 

LLMs. 

[5], [6], [8], [13], [58], [71], [82], 

[93], [102], [107], [110], [119], 

[121], [122], [126], [128], [131], 

[136], [140], [142], [144], [146], 

[162] 

Precision 

Measures the proportion of correct optimistic 

predictions among all instances predicted as positive. 

It is essential when LLMs are used for information 

extraction or question answering. 

[16], [17], [19], [68], [79], [92], 

[96], [109], [113], [117], [122], 

[123], [157], [173] 

Recall 

Measures the proportion of actual positive cases 

correctly identified by the model. Used to assess how 

well LLMs detect relevant information or correct 

responses. 

[80], [89], [94], [95], [98], [99], 

[174] 

F1-score 

The harmonic mean of precision and recall 

summarizes the balance between both metrics in a 

single score. It provides a balanced view of LLM 

performance, especially in uneven class 

distributions. 

[15], [88], [90], [91], [97], [100], 

[115], [137], [147] 

Medical concept 

coverage 

Measures how well a generated medical text captures 

the relevant clinical concepts (e.g., symptoms, 

medications, diagnoses) found in the reference and 

is commonly used in medical summarization tasks to 

evaluate clinical accuracy and completeness beyond 

surface-level text overlap. 

[4], [160], [175] 

The average 

number of 

unsafe matches 

Quantifies the average number of instances in which 

generated text includes medically unsafe or incorrect 

content compared to the reference and is used to 

assess the safety and reliability of LLM outputs in 

clinical or health-related applications. 

[161], [176] 

As shown in Table 13, these metrics provide a robust quantitative framework for analyzing the performance of 

LLMs in different clinical scenarios. However, their concrete application varies depending on the nature of the 

task, the type of model, and the medical context. The following review encompasses several recent studies that 

illustrate how these metrics evaluate models in real-world tasks, enabling us to identify their strengths and 

current limitations. 

One of the most advanced fields is computer-aided diagnosis. For example, in the field of mental health, the 

MentalBERT and MentalRoBERTa models are specifically trained to detect symptoms of depression and 
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anxiety from social media posts. MentalBERT achieves an F1-score of 94.23% and a Recall of 94.33% when 

analyzing user posts on the Reddit platform [89]. In comparison, MentalRoBERTa obtains an F1-score of 

93.38% on eRisk, a dataset specifically designed to assess the early detection of mental health problems through 

texts posted on social networks, demonstrating its ability to identify symptoms of anxiety and depression in 

informal and unstructured contexts. In parallel, computer vision applied to clinical diagnosis also shows 

remarkable results. A model based on deep neural networks detects cataracts, jaundice, and strabismus with an 

accuracy of 99.31%, 99.77%, and 97.82%, respectively, demonstrating the potential of artificial intelligence to 

assist in ocular and pediatric diagnosis in contexts with limited resources [6]. 

In more complex surgical scenarios, the performance of GPT-4 is evaluated in detecting postoperative renal 

complications, where it achieves an F1-score of 0.87 and an accuracy of 86.7% in recognizing primary tumors. 

However, its accuracy is lower, according to the Clavien-Dindo scale, which classifies postoperative 

complications by severity and type of intervention required, with only 37.4% accuracy, revealing its capacity 

and current limitations for more structured analysis [113]. Complementarily, in bariatric surgery, ChatGPT-4 

demonstrates an accuracy of 83% in correctly classifying clinical scenarios, particularly in recognizing surgical 

complications, with a rate of 91.7%, surpassing models such as Bard and Bing [15]. 

In ophthalmology, the performance of ChatGPT is evaluated in the context of clinical question banks, achieving 

an accuracy of 55.8% in the BCSC set and 42.7% in OphthoQuestions, with improvements in its Plus version 

to 59.4%. These results reflect a still incipient but evolving knowledge in highly specialized domains [19]. In 

parallel, the structured extraction of information from clinical records is a task where LLMs demonstrate 

significant efficacy. ChatGPT is used to extract key information from oncology pathology reports. It achieves 

an F1-score of 0.91, with precision metrics of 92% in lymph node identification and 99% in histological 

diagnoses, validating its usefulness in automated data streams [95]. In another application, the AssistMED 

system is able to characterize cohorts of cardiological patients in Polish clinical registries, obtaining an accuracy 

of 99.5% and an F1-score of 0.988. Its performance was comparable to human work, optimizing the 

identification of treatments and ultrasound findings [98]. 

Personalized clinical prediction is another growing field. Health-LLM, a model that integrates medical scores 

and feature extraction from clinical text, is evaluated for predicting diseases in fields such as endocrinology, 

gastroenterology, and internal medicine. It achieves an accuracy of 83.3% and an F1-score of 0.762, surpassing 

reference models such as GPT-4 and LLaMA-2 and consolidating itself as a valuable tool for preventive 

diagnosis [116]. 

Clinical text generation models, such as BART and T5, are applied to augment data in medical records. In the 

generation of clinical notes, BART achieves a ROUGE-1 of 52.35, a ROUGE-2 of 41.59, and a ROUGE-L of 

50.71, while T5 shows better performance in treatment content [47]. In a second study, T5 is used to generate 

automatic knee MRI summaries, achieving a ROUGE-L of 63.8 and a 70% match in fluency and content with 

reports made by radiologists, highlighting its ability to automate reports in radiology [76]. 

Models such as BiomedRAG, which incorporate augmented retrieval, address the extraction of complex 

relationships between biomedical concepts. This system achieves an F1-score of 88.83% in extracting 

biomedical triples in the ChemProt ensemble, reducing semantic hallucinations and improving accuracy in 

pharmacological and molecular interaction contexts [97]. 

Finally, one of the most popular applications of LLMs in healthcare is answering medical questions. 

Aeyeconsult, a specialized clinical chatbot based on GPT-4 and leveraging verified ophthalmology literature 

through RAG, achieved an accuracy of 83.4% on OKAP questions, outperforming ChatGPT-4 overall (69.2%) 

and showed higher consistency and lower error rate [131]. In hepatology, ChatGPT achieves 79.1% accuracy 

in answering questions on cirrhosis and 74% accuracy on hepatocellular carcinoma, with 76.9% correct answers 

on treatment, although it shows deficiencies in content completeness [117]. In broader scenarios, ChatGPT-4 

demonstrates 100% accuracy and 83.2% completeness in answering questions on heart failure, while GPT-3.5 

scores 98.1% and 78.5%, respectively, positioning these models as viable assistants in educational and clinical 

support settings [124]. 

In short, rigorous and systematic evaluation of the performance of LLMs in clinical contexts is essential to 

validate their technical accuracy and ensure their ethical feasibility, practical utility, and safety in patient care. 

The results reviewed evidence that, although LLMs achieve remarkable performance in tasks such as diagnosis, 

information extraction, and medical text generation, their applicability remains highly dependent on the type of 

task, the specific clinical domain, and the quality of training. As these technologies evolve, the integration of 
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technical metrics with contextualized clinical indicators becomes increasingly necessary, capable of capturing 

not only superficial accuracy but also semantic depth, relevant medical coverage, and potential health risks. 

Thus, the roadmap to a reliable implementation of LLMs in medicine depends on improving architectures and 

designing comprehensive evaluation frameworks that reflect the real complexities of the clinical environment. 

5. Limitations and future challenges 

Integrating LLMs in the medical, healthcare, and educational domains presents many technical, ethical, and 

legal constraints that require rigorous attention. In the medical domain, explainability, reliability of clinical 

decisions, and mitigating errors, such as hallucinations, are crucial for avoiding risks in critical contexts [49]. 

In the healthcare domain, protecting sensitive data, ensuring algorithmic fairness, and maintaining operational 

transparency are crucial for maintaining the trust of patients and healthcare professionals. Meanwhile, in the 

healthcare educational domain, challenges arise related to content accuracy, intellectual property, and the 

generation of misleading information that affects learning and professional training processes. Although 

solutions such as constructing new datasets and specific assessment techniques have been proposed [177], [178], 

risks persist. Therefore, the analysis categorizes the problems into five key areas: privacy and security of patient 

data, risk of misinformation, fairness and bias, explainability and reliability, and plagiarism and liability issues. 

This section examines these limitations across all five domains, highlighting both challenges and prospects for 

addressing them in the future. 

5.1. Privacy and security of patient data 

In the medical and healthcare domain, the handling of personal data requires robust security measures to ensure 

patient confidentiality. Although current systems enable the advanced analysis of large volumes of data, the 

accidental inclusion of identifiable information in training sets remains a concern, as LLMs infer personal 

attributes from seemingly neutral data [179]. Chuang et al. [164] mention that ensuring patient privacy is even 

more complex than achieving good clinical outcomes. While digitizing healthcare services makes accessing and 

reusing data easier, it also increases the risk of critical information leaks. 

Against this backdrop, it is essential to combine technological strategies such as automated anonymization and 

recognition of sensitive entities with updated regulatory frameworks and governance plans that address the 

entire data lifecycle [180]. The challenge lies in complying with regulations such as the Health Insurance 

Portability and Accountability Act (HIPAA) [181] and the General Data Protection Regulation (GDPR) [182], 

as well as ensuring the ethical and responsible use of technology, even in contexts where legislation does not 

evolve at the same pace. Creating appropriate regulatory frameworks remains a significant challenge. 

5.2. Generation of misinformation and hallucinations 

One of the most discussed obstacles to applying LLMs in medicine and education is the generation of answers 

that, although linguistically plausible, lack veracity. This phenomenon, known as hallucination, poses a hazard 

when such responses serve in clinical or educational decision-making, where accuracy remains critical. 

Documented cases show that models such as GPT-3 offer harmful suggestions in mental health contexts [183]. 

To mitigate this problem, several strategies emerge, such as learning in context, prompting approaches based 

on explicit reasoning (Chain-of-Thought), and model evaluation using benchmarks designed explicitly for 

medical tasks [184]. In this regard, Med-HALT, a benchmark dataset for assessing hallucination phenomena in 

LLMs in medical contexts, is presented by Pal et al. [142]. This corpus comprises two distinct categories of 

tests: one focuses on reasoning and the other on memory. Both aim to measure the model's ability to solve 

problems and retrieve specific information within the medical domain. However, neither technical solution 

replaces the need for professional supervision and human verification mechanisms. 

5.3. Algorithmic biases and fairness 

Training LLMs with data extracted from the web or scientific corpora reproduces and amplifies pre-existing 

biases related to gender, ethnicity, nationality, age, or other social factors. In the medical domain, this translates 

into diagnostic or therapeutic decisions that are not equitable for all patients [185]. In the educational context, 

it manifests in responses that reinforce cultural stereotypes or exclude regional or linguistic realities, thus 

limiting the inclusiveness and diversity of the knowledge represented. One of the main concerns associated with 

using LLMs is the risk of generating erroneous or biased information. When trained on large volumes of text, 

these models produce inaccurate or misleading content, including trusted and unverified sources. Particularly 
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in the scientific literature, where historical biases such as gender or racial biases persist, LLMs may replicate 

and inadvertently amplify these biases in their generated results. 

Algorithmic fairness cannot be approached solely from a technical standpoint. It is imperative to reassess the 

representativeness of the data used and establish mechanisms to detect and mitigate biases during both the 

training phase and inference. Investigating strategies to identify, reduce, and prevent these biases represents a 

fundamental line in the ethical development of LLMs. Implementing systematic audits and rigorous processes 

for validating and verifying results is crucial. Strategies such as Counterfactually Fair Prompting (CFP) [186] 

represent essential advances in bias mitigation as they modify model instructions or inputs to promote more 

equitable responses. However, these technical solutions must be framed within an interdisciplinary approach 

that involves professionals from health, education, law, ethics, and computer science. As highlighted in [187], 

it is crucial to prioritize equity and inclusivity when applying LLMs in biomedical contexts. This requires 

carefully selecting and preprocessing training data to minimize inherent biases and facilitate collaboration 

among subject matter experts, data scientists, and ethicists. Only through collaborative governance and the 

establishment of clear guidelines can genuinely unbiased, accountable, and helpful AI systems be developed for 

the benefit of all society. 

5.4. Explainability and reliability 

LLMs output must be understandable and reliable for end users in contexts where decisions directly impact 

people's lives, such as health and education. However, many LLMs operate as opaque systems or black boxes, 

which makes it difficult to trace the process leading to a specific recommendation or conclusion. This lack of 

transparency represents a significant barrier to adoption in critical domains, where practitioners require clear 

and defensible evidence to support their decisions [118]. 

In the healthcare sector, this concern becomes even more urgent. LLM-generated recommendations influence 

diagnoses, prognoses, or therapeutic choices. Without a clear understanding of the reasoning behind these 

suggestions, there is a risk of compromising patient safety. The presence of biases in training data further 

exacerbates this situation, as such biases lead to incorrect inferences that disproportionately affect certain 

population groups [113], [118]. 

Explainability, defined as the ability of a model to provide understandable reasons behind its decisions, becomes 

an indispensable condition for the ethical and practical integration of artificial intelligence in medicine [159]. 

This is especially important in areas such as clinical risk prediction or medical image analysis, where automated 

decisions must be independently validated by human experts [83], [188]. 

Faced with these challenges, various solutions emerge. Some initiatives aim to develop interpretable 

mechanisms for tracking model reasoning, while others introduce control labels to guide text generation and 

enhance transparency. Strategies such as visualizations, decomposition of contributions by token, or the design 

of hybrid architectures (combining statistical models and explicit rules) show promising results. However, 

absolute trust builds only if these systems are auditable and their operation aligns with defined ethical and 

regulatory frameworks [189]. Therefore, effective governance of LLMs encourages traceability, oversight, and 

continuous human intervention. The challenge lies in making the models explain what the systems themselves 

do and making these explanations understandable, relevant, and valuable to the various stakeholders involved 

in decision-making. Achieving this goal requires a multidisciplinary and collaborative approach that includes 

experts in health, education, informatics, ethics, and public policy. 

5.5. Legal, ethical, and intellectual property aspects 

The deployment of LLMs in sensitive areas, such as healthcare and education, raises new challenges regarding 

accountability, authorship, and regulatory compliance. As these systems acquire the capacity to generate 

clinical, pedagogical, or administrative content, key questions emerge: Who takes responsibility if a model 

provides an erroneous recommendation? How is authorship attributed in a text generated without explicit 

references? What mechanisms exist to avoid copyright infringement or the dissemination of unsupported 

information? 

These concerns are compounded when LLMs operate without adequate human oversight. Their ability to 

generate plausible but incorrect content, reproduce text fragments without attribution, or even mimic a person's 

style and identity leads to plagiarism, misinformation, or impersonation [143]. In clinical applications, 

delivering sensitive diagnoses without adequate contextual or emotional support has significant ethical and legal 

consequences. 
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In response, various jurisdictions have formulated regulatory frameworks to mitigate these risks. For example, 

the European Union's Artificial Intelligence Act (AI Act) proposes classifying AI systems according to their 

level of risk [126]. It establishes specific obligations for providers of general-purpose models, including 

requirements for transparency, risk assessment, and technical documentation. 

In the United States, the Health Insurance Portability and Accountability Act (HIPAA) establishes strict 

guidelines for the use of sensitive data in healthcare settings, directly affecting how LLMs manage confidential 

patient information [181]. This involves everything from implementing robust encryption to regular audits and 

granular access controls. Other relevant frameworks, such as the General Data Protection Regulation (GDPR) 

[182] and the Medical Device Regulation (MDR) [190], serve as additional regulatory barriers that must be 

overcome to fully adopt generative AI in biomedical contexts. These regulations aim to promote traceability, 

minimize risk, and foster the responsible use of algorithmic systems, thereby helping to build trust among users, 

professionals, and institutions. 

However, the existence of regulations does not eliminate the current vacuum in terms of global standards and 

international coordination. Rapid technological evolution often surpasses the legislative capacity to respond 

with agility and scope. It is, therefore, essential to move towards models of shared responsibility in which 

developers, users, regulators, and service providers collaborate in designing, implementing, and monitoring 

these systems. This approach not only facilitates stronger governance but also ensures that technological 

innovation is aligned with fundamental ethical principles and respects the rights of individuals [138]. 

6. Conclusions 

This systematic review demonstrates that LLMs have a profound impact on medicine, healthcare, and medical 

education. Their implementation in clinical, administrative, and training tasks evolves from experimental 

approaches to concrete applications in real-world settings, with promising results in multiple medical 

specialties. 

In the clinical setting, specialized LLMs such as ClinicalBERT [81], MedPaLM-2 [49], and PubMedGPT [53] 

demonstrate outstanding capabilities to generate differential diagnoses, summarize medical histories, detect 

pathologies through imaging, and assist in complex therapeutic decisions [67], [82], [86]. These models 

automate clinical processes and provide interpretable explanations, which enhance diagnostic transparency [84], 

[104]. 

In the healthcare context, tools such as GatorTron [64], BiomedRAG [97], and AssistMED [98] enable the 

structuring of unstructured medical information, extraction of biomedical relationships, and automation of 

triage, screening, and clinical risk prediction tasks [68], [88], [96]. These capabilities strengthen institutional 

efficiency, epidemiological surveillance, and the design of data-driven health policies. 

In the educational area, LLMs facilitate personalized medical training, exam simulation, feedback generation, 

and explanation of complex clinical concepts [143], [144], [145]. Models such as BioGPT [52], Med-HALT 

[142], and BioBART [139] support the generation of summaries, clinical reports, and case studies, improve 

pedagogical quality, and reduce the teaching load. 

However, deploying these technologies faces several critical challenges: rigorous clinical validation, reduction 

of algorithmic bias, interpretability of results, and the need for both ethical and technical regulations for their 

safe implementation. In particular, the field requires avoiding information hallucination in sensitive clinical 

contexts, strengthening traceability for architectures such as RAG [68], [77], [131], and ensuring cultural and 

linguistic appropriateness in diverse populations [71], [122], [137]. 

For all these reasons, LLMs have the potential to redefine the future of healthcare and medical education. Their 

adoption must be responsible, transparent, and patient-centered, integrating robust regulatory frameworks, 

ongoing scientific validation, and close collaboration between developers, clinicians, and educators. This 

convergence between AI and biomedical sciences creates the conditions to consolidate more accurate, equitable, 

and accessible medicine for all. 
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