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ABSTRACT   

Poor solubility remains a critical barrier in the in vitro evaluation of phytochemicals, many of which are 

hydrophobic and difficult to dissolve in aqueous media. This review explores the physicochemical factors 

influencing phytochemical solubility, emphasizing the role of solvent properties such as polarity, proximity, 

and cytotoxicity. Commonly used solvents—including polar protic, polar aprotic, and non-polar solvents —

are discussed concerning their solubilizing capacity and compatibility with biological systems. Solvent-

induced changes in membrane dynamics and cytotoxic profiles are also examined, highlighting the need for 

cautious selection and optimization. Several advanced strategies to enhance solubility, such as co-solvent 

systems, pH modulation, nanocarrier encapsulation, surfactants, and deep eutectic solvents (DESs), are 

reviewed. A focused case study on curcumin illustrates how different solubilization methods can significantly 

improve in vitro performance. The review underscores the importance of standardized solvent reporting to 

ensure reproducibility and reliability in phytochemical research. 
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1. Introduction  

An initial step in drug discovery and development involves using in vitro cell culture assays, which provide 

insights into the cytotoxicity of the compounds [1], [2]. Over 70% of compounds under investigation suffer 

from very low water solubility or are classified as insoluble [3]. Phytochemicals, despite their pharmacological 

potential, often belong to this category [4]. Phytochemicals are diverse plant based bioactive compounds that 

have gained considerable attention because of their anti-inflammatory, antioxidant, antimicrobial, and 

anticancer properties [5], [6]. However, their practical use is hindered by challenges such as poor solubility, 

instability, and low bioavailability [7]. The solubility of a phytochemical is primarily determined by its 

characteristics and the type of solvents employed [8]. Moreover, the composition of cell culture media can 

significantly influence both the structural integrity and physiological activity of the phytochemicals [9]. 

Therefore, it is essential to use an appropriate solvent as a vehicle to dissolve bioactive compounds in biological 

experiments [10], [11]. An important factor in solvent selection in in vitro assays is its compatibility with both 

the culture medium and cells, as the level of cytotoxicity varies according to the solvent and its concentration 

[12]. Moreover, the efficiency of a solvent is largely influenced by its physicochemical properties, such as 

polarity, proximity, and viscosity. These properties can affect how a solvent interacts with different classes of 

phytochemicals [13], [14].  

Organic solvents, which are carbon-based, are commonly used in drug delivery research [15]. The 

characteristics of these solvents are defined by their volatility, boiling point, molecular weight, and color [16]. 

Based on some studies, organic solvents could be toxic to mammalian cells [17], [18]. Yet they have been 

utilized in experiments to solubilize hydrophobic compounds [17], [18]. Due to possible cytotoxicity, selecting 

an appropriate solvent concentration is crucial [15]. Commonly used organic solvents include dimethyl 

sulfoxide (DMSO), ethanol, and acetone [11], [12], [15]. 

A major limitation in the current literature is the inconsistent reporting of solvent use, concentration, and 

solubility status. Many studies fail to confirm whether a phytochemical is fully dissolved or present in 
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suspension. This oversight can compromise reproducibility and result in misleading conclusions regarding 

bioactivity. Best practices include documenting solvent type, volume, final concentration in culture medium, 

solubility confirmation (e.g., via visual inspection or UV-visible spectroscopy), and solvent-only control 

experiments [19].  

This review critically examines the solubility challenges associated with phytochemicals in in vitro systems and 

explores solvent strategies, compound properties, compatibility considerations, and innovative solutions for 

improved solubilization. 

1.1. Solvent properties and their role in compound solubility 

Thermodynamic interaction between the solvent and the compound plays an important role in the solubility of 

the solute. Polar solvents are expected to dissolve polar compounds through hydrogen bonding interactions. In 

contrast, non-polar solvents are suitable for solubilizing non-polar compounds by providing a hydrophobic 

environment [20], [21]. Hence, it is beneficial to classify the selected solvent based on its polarity and proximity 

to be able to predict its solubilizing capacity for the compound of interest. 

1.1.1. Polar protic solvents  

Polar protic solvents have hydrogen-bond donating hydroxyl or amine groups. Widely used polar protic solvents 

include water, ethanol, methanol, and isopropanol [14]. The selection of polar protic solvents depends on two 

important factors: the solubility enhancement and biocompatibility [22]. For instance, even though ethanol and 

methanol exhibit low cytotoxicity compared to some other organic solvents such as chloroform, the utilization 

of these solvents should be within a controlled concentration range in in vitro assays [22]. According to Nguyen, 

T. T., et al. (2019), at a concentration ranging from 0.15% to 1.25%, ethanol and methanol were well tolerated 

by HepG2, MDA-MB-231, MCF-7, and VNBRCA1 cell lines [11]. Another study has shown that DMSO at a 

range of 0.5% to 5% exhibited a greater cytotoxicity with an IC50 value of  1.8%–1.9% (v/v) compared to 

ethanol with an IC50 value of >5% (v/v) in MCF-7, RAW.264.7, and HUVEC cell lines [15]. 

Facilitating the entry of the soluble compound into and through the lipid bilayer is another important element 

that should be noted. Dyrda et al. found that methanol, compared to DMSO and ethanol, caused a slight increase 

in the fluidity of the phospholipid system within the non-polar core of the membrane. Giovenco and Anwar 

investigated the effect of ethanol on the structure of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 

membrane in a concentration-dependent manner. Their findings reveal that ethanol at a concentration below 

approximately 12% (mol/mol) causes an expansion of the membrane, a reduction in its thickness, and also 

disordering and enhancement of the interdigitation of lipid acyl chains. [24]Despite these changes, the 

membrane's structure remained intact. Notably, when the concentration of ethanol exceeded 12% (mol/mol), 

more pronounced changes in the membrane structure were observed. The formation of multiple transient defects 

at the lipid-water interface is one of these changes[24]. Another study on the cell line from young stems of 

Taxus cuspidate demonstrated that a concentration of >1% (v/v) of DMSO did not negatively affect the cell 

membrane. However, ethanol, even at a low concentration of 0.4% (v/v), has disrupted cell membrane integrity, 

especially in the long term[25].Facilitation of entrance of the soluble compound into and through the lipid 

bilayer is another important element that should be noted. Dyrda et al. found that methanol compared to DMSO 

and ethanol caused a slight increase in the fluidity of the phospholipid system within the non-polar core of the 

membrane [23]. Giovenco and Anwar investigated the effect of ethanol on the structure of 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) membrane in a concentration dependent manner. Their findings reveal an 

expansion of the membrane, a reduction in the thickness of the membrane, and also disordering and 

enhancement of the interdigitation of lipid acyl chains are caused by ethanol at a concentration below 

approximately 12% (mol/mol) [24]. Despite these changes, the structure of the membrane remained intact. 

Notably, when the concentration of ethanol exceeded 12% (mol/mol), more apparent changes in the structure 

of the membrane were observed. Formation of multiple transient defects at the lipid-water interface is one of 

these changes [24]. Another study on the cell line from young stems of Taxus cuspidate has demonstrated that 

the concentration of >1% (v/v) of DMSO did not affect the cell membrane negatively. But, ethanol, even at a 

low concentration of 0.4% (v/v), has caused disruption in cell membrane integrity, especially in a long-term 

manner [25]. 

1.1.2. Polar aprotic solvents 

Polar aprotic solvents do not donate hydrogen bonds; therefore, they are capable of solubilizing moderately 

polar to non-polar compounds [26]. One of the most commonly used solvents in biological research, dimethyl 
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sulfoxide (DMSO), acetone, and acetonitrile belong to this category [27]. DMSO is commonly employed as a 

solvent for hydrophobic compounds in biological research [28], [29], [30]. Despite its popularity due to the 

effectiveness in solubility of a wide range of compounds, the utilization of DMSO is highly dose-dependent in 

regard to the toxicity concerns [27], [31]. Based on a study performed by Galvao, J., et al. (2014), DMSO 

exhibited cytotoxicity at concentrations >1% (v/v) in a retinal neuronal cell line in vitro. In addition, they have 

demonstrated that 5 µl of  the intravitreally dosed DMSO induced retinal apoptosis in rats [22]. There are several 

studies confirming the capacity of DMSO to enhance membrane permeability [32]. This solvent can facilitate 

the transportation of the soluble compound across the membrane by integrating into the lipid bilayer and causing 

thinning of the membrane and pore formation [32]. Even though this characteristic makes DMSO an effective 

and valuable solvent across cell culture studies, it is important to note that some studies have demonstrated that 

DMSO, even at low concentration, can significantly alter the structure and properties of the lipid bilayer due to 

membrane surface dehydration [33]. The impact of DMSO on the lipid membrane is similar in many ways to 

the observed effect of alcohols such as ethanol [34], [35], [36]. Low concentration of DMSO causes a lateral 

expansion of the membrane while leading to a reduction in its overall thickness [37]. However, a concentration 

higher than the critical threshold of DMSO could promote spontaneous pore formation in the membrane. 

Exceeding this threshold leads to severe destabilization of the bilayer structure. This effect is attributed to the 

preferential localization of DMSO below the membrane headgroup region. Hence, it can act as a spacer that 

increases lipid-lipid separation [36]. Consequently, if used at optimal concentration, DMSO can increase 

membrane fluidity, facilitating membrane fusion, lowering the energy barrier for molecular transport, and 

finally promoting pore formation [36].  

Acetone has to be used at a lower concentration to avoid cytotoxic effects [12]. The least cytotoxic effects on 

MCF-7, RAW.264.7, and HUVEC cell lines were observed in concentrations ranging from 0.5% to 5% (v/v) 

[15]. The molecular mechanism of action of acetone on the membrane has been reported to be very similar to 

ethanol and DMSO [38]. Acetone, compared to methanol, has a stronger effect on the membrane dynamics and 

fluidization. However, this effect remains less apparent compared to DMSO. This observation indicates a 

comparatively lower potential for enhancing membrane permeability for acetone [23].  

1.1.3. Non-polar solvents 

Non-polar solvents are typically hydrocarbon-based and can solubilize lipophilic compounds. Chloroform is an 

example of a solvent that belongs to this category [16]. These solvents are utilized to extract lipophilic 

compounds [8], however, their use in cell-based assays is limited due to their cytotoxicity effects even at a lower 

range of concentrations [31]. 

1.1.4. Strategies to improve solubility in in vitro settings 

Several strategies have been employed to address the solubility limitations of compounds in vitro. Using a 

cosolvent system is one of them. In this method, a combination of water-miscible solvents, such as ethanol-

DMSO, is used to improve the solubility of the compound while reducing individual solvent toxicity. The 

polarity of this type of system can be adjusted following the characteristics of the compound to help their 

solubility without exceeding the toxic threshold [39].  

Encapsulation is another method of enhancing the solubility of compounds and preserving them from 

photodegradation and hydrolysis. Nanocarriers such as liposomes, micelles, and solid lipid nanoparticles belong 

to this method [40].  

Using surfactants such as Tween 80 could reduce the interfacial tension and help to obtain a homogenous 

solution in aqueous media. However, the utilized surfactant might have a dose and time-dependent cytotoxicity 

on cells. It is necessary to optimize the utilized surfactant concentration [12]. In addition, an optimal pH level 

could adjust the ionization state of the solvent and improve the solubility of the compound [41].  

Ultrasonic treatment is another technique that can help with solubilization if used in a proper manner [42]. For 

instance, based on findings of a study, the solubility of piroxicam in water and gastric fluid was increased after 

the use of sonication during the homogenization phase. These results were obtained under a sufficiently high 

sonication power and time [43]. 

A recent and promising strategy in improving solubility of compounds is the use of deep eutectic solvents 

(DESs). DESs, formed by mixing a hydrogen bond donor and a hydrogen bond acceptor, have shown potential 

in solubilizing some phytochemicals [44], [45]. These solvents could increase the solubility of both polar and 
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non-polar compounds due to their unique hydrogen-bonding [45]. In some studies, a significant solubility of 

some bioactive compounds and biomolecules has been demonstrated [46], [47].   

Incorporating these approaches into in vitro protocols could reduce solubility limitations, thereby enhancing the 

accuracy and reliability of an experiment. 

1.1.5. Case study: Curcumin solubility in in vitro study  

Curcumin, a hydrophobic polyphenol derived from the rhizome of Curcuma longa L., is a widely studied 

compound for its anticancer, anti-inflammatory, and antioxidant properties [48]. Its application in aqueous 

biological systems is severely hindered by its low solubility in water [49]. Novel delivery systems are being 

designed to address and overcome these challenges [50]. These approaches have shown promise in improving 

curcumin solubility and bioavailability in vitro [51], [52], [53]. Table 1 describes some of these strategies. 

Table 1. Solvent systems used to enhance the solubility of curcumin. 

Solvent/Method Outcome measures Solubility enhancement Reference 

Adjustment of 

the pH level 

Solubility of turmeric in 5 different 

solutions was evaluated using 

colorimetry assay 

Curcumin exhibited a solubility of 17.6 

mg/mL in 0.2 M sodium hydroxide and 10.1 

mg/mL in pure ethanol, whereas its 

solubility in hydrochloric acid was 

significantly lower at just 0.034 mg/mL 

[54] 

NADES1 The solubility of curcumin in seven 

different natural deep eutectic 

solvents was measured 

spectrophotometrically 

Using a system with choline chloride and 

glycerol in equimolar proportions increased 

12000 times the solubility of curcumin, 

compared to aqueous solution 

[55] 

Acetone Solubility of curcumin in various 

solvents was evaluated 

experimentally using the shake flask 

method and in silico through 

COSMO-RS simulations 

Curcumin demonstrated high solubility in 

DMSO2, DMF3, acetone, and PEG4004, but 

is practically insoluble in glycerin and water [56] 

Co-solvent Solubility of curcumin was 

experimentally determined using the 

saturation shake-flask method over a 

temperature range of 278.15 to 

318.15 K at atmospheric pressure 

(101.1 kPa) 

A mixture of n-propanol and water with a 

composition range of 0.20 < x₁ < 1 

enhanced curcumin solubility more 

effectively than equivalent compositions of 

ethanol or isopropanol 

[57] 

Encapsulation A novel encapsulation technique 

was investigated by spray-drying a 

warm aqueous ethanol solution 

containing co-dissolved sodium 

caseinate and lipophilic food 

components, with curcumin used as 

the model compound. Solubility of 

curcumin was evaluated via 

spectrophotometry  

At the same curcumin concentration, free 

curcumin appeared as insoluble 

particulates, whereas casein nanocapsules 

dispersed curcumin at concentrations over 4 

decades times higher than its solubility limit 

while maintaining a transparent appearance. 

[58] 

Surfactant A mixed double- and single-chained 

surfactant system at an equimolar 

ratio was analysed based on 

fluorescence and conductivity 

measurements 

The solubility of curcumin in an aqueous 

medium, following the addition of a mixed 

double- and single-chained surfactant 

system at an equimolar ratio, increased to 

the order of 10³ to 10⁴, representing at least 

a tenfold enhancement compared to 

previously reported values 

[59] 

Nanofibers Curcumin nanofibers were produced 

via electrospinning with a water-

soluble polymer, while curcumin 

nanoparticles were prepared by 

The water-soluble nanofiber formulation 

increased curcumin solubility by up to 38-

fold comparison to free curcumin dissolved 

in the same medium, while water-insoluble 

[60] 
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Solvent/Method Outcome measures Solubility enhancement Reference 

nanoprecipitation using a water-

insoluble polymer. Release and 

solubility of curcumin was measured 

using a modified dialysis diffusion 

method 

nanoparticles enhanced cellular penetration 

of curcumin by 2-fold. Both formulations 

effectively lowered curcumin’s IC₅₀ and 

reduced cancer cell viability 

1NADES: Natural Deep Eutectic Solvents 
2DMSO: Dimethyl Sulfoxide 
3DMF: Dimethylformamide 
4PEG400: Polyethylene Glycol 400 

2. Conclusion 

Solubility remains a significant challenge in the in vitro evaluation of phytochemicals. Careful selection of 

solvents and optimization of concentration are vital to ensure accurate and reproducible results. Emerging 

strategies, such as nanotechnology-based delivery systems, encapsulation systems, and DESs, offer promising 

solutions for improving solubility and bioavailability. Standardized guidelines for solvent use and reporting can 

further enhance the reliability of in vitro phytochemical research. 
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