The behavior of tapered one-way continuous two-span reinforced concrete slabs under repeated load

Fatima Mseer 1, Nameer Alwash 2
1 College of Engineering, University of Babylon, Iraq
2 College of Engineering, University of Babylon, Iraq

ABSTRACT

The scope of this study is to look at the effect of supplying a non-prismatic cross-section on the flexural strength of one-way continuous slabs reinforced concrete (RC) with two spans under repeated load. The research aims to study the ability of non-prismatic slabs to increase flexural stiffness which leads to saving construction costs. For this purpose, experimental investigations were carried out; the work consisted of fabrication and testing six two-span RC slabs with the same volume of concrete. Two of them were prismatic with a constant depth, while all the others were non-prismatic with tapered cross-sections having varying depth. Prismatic slabs were stiffer than non-prismatic slabs in all support settings, according to the findings. It is found that providing a tapered slab with a positive or a negative haunch has an insignificant effect on the bearing capacity for a prismatic slab. On the other hand, the tapered slab led to increase the deflection at service load compared to the prismatic slab.

Keywords: Non prismatic; Repeated load; Slab; One way; Two span

Corresponding Author:
Nameer Alwash
College of Engineering, University of Babylon
Hilla, Babil, Iraq
eng.nameer.abdul@uobabylon.edu.iq

1. Introduction

Non-prismatic members are members with non-constant cross-sections along their length. Because the structural engineering techniques were improved, non-prismatic members are widely utilized in many structures including buildings and bridges [1]–[3]. Through material and structural member redistribution (tapering), architects and structural engineers can create and implement unique aesthetic architectural designations, as well as seek ideal low weight - high strength systems [4]–[6]. Recently, the impact of utilizing non-prismatic cross-section on the behavior of reinforced concrete (RC) structural components have been extensively studied. Researchers mostly focused on the tapered cross-section of RC beams [7]–[11]. When used to replace equal strength prismatic sections, these beams can reduce steel and concrete consumption (see Figure 1).
Al-Shaaraf et al., [12] explored the structural behaviour of voided slab strips built of regular and high strength self-compacted concrete (SCC) under repetitive load. The experiments were conducted using 10 one-way simply supported slabs that were subjected to monotonic and repetitive loads. According to one of their findings, the flexural failure mechanism of the specimens tested under repeated stress was identical to that of comparable specimens tested under monotonic load.

Toshniwal, [13] examined the mistakes that engineers make when performing cross-sectional analysis on non-prismatic bridge decks in practice. For an existing bridge deck that is the Wolweg Bridge in the Netherlands, the inaccuracy in cross-section findings for several models is computed. As illustrated in Figure 2, the bridge has two decks, each with three spans. The end decks are 10.5 meters long, while the main deck is 13 meters long. To boost the shear capacity, a tapered part is supplied at the middle support. In the southern half of the deck, where the study is centered, the width is 20.8 m.

![Figure 2. Deck dimensions and tapered section of the deck [6]](image)

Engineers make many mistakes while doing cross-sectional analysis of haunched concrete bridges, according to Toshniwal [13], owing to the non-linear layout of the centroidal axis. Toshniwal [13] modified the haunched decks to make the centroidal axis remains linear while using the same volume of concrete as seen in Figure 3. The author discovered that this modification has no effect on the deck's shear capacity or bending moment resistance although these results were obtained at the ultimate limit state (ULS), and structural behavior at the serviceability limit state may differ (SLS).

![Figure 3. Modified tapered section of the deck [13]](image)

It is well known from the literature mentioned above that there is a lack of knowledge concerning the effect of providing a non-prismatic cross-section on the strength and flexural behavior of reinforced concrete one-way slabs [14]–[17].

2. **Experimental program**

In this research, six RC one-way slabs were built and examined; two of them with prismatic cross-section and four slabs with different tapering configurations. The variables adopted in this research included:

1. The influence of tapering configuration on the behavior of continuous non-prismatic slabs under repeated load.
2. The behavior of slabs with different types of ending supports under repeated load.

The experimental program is described in detail in the parts below:
1.1. Materials properties
The attributes of the materials utilized in this investigation were determined in the laboratory. To guarantee that all the slabs tested have almost the same compressive strength, the samples were built and cured under the same settings. All slabs were produced with ordinary Portland cement, sand (maximum size is 4.75mm), and gravel (maximum size is 14mm). The concrete mix ratios (by weight) utilized in this investigation are shown in Table 1. Compressive and splitting tensile strength were measured using a compression testing machine. These two tests were performed on cylindrical concrete specimens of 300mm high and 150mm diameter. At 28 days, the average concrete splitting tensile and compressive strength were 3.28 MPa and 35.2 MPa, respectively. The results of a direct tensile test which has been conducted on three samples of Ø 8 mm diameter deformed steel bar was 550 MPa and 678 MPa for the yield and tensile strengths, respectively.

Table 1. Mixture Properties for the chosen concrete mixing

<table>
<thead>
<tr>
<th>Material</th>
<th>The Selected Concrete Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water/Cement proportion</td>
<td>0.3</td>
</tr>
<tr>
<td>Superplasticizer Sika VisoCrete ® 5930-L (Liter)</td>
<td>4.5</td>
</tr>
<tr>
<td>Cement (Kg/m³)</td>
<td>450</td>
</tr>
<tr>
<td>Fine aggregates (Kg/m³)</td>
<td>765</td>
</tr>
<tr>
<td>Coarse aggregates (Kg/m³)</td>
<td>1035</td>
</tr>
</tbody>
</table>

1.2. Description of specimens
All slabs were 3*0.5 meters using various depths with two equal spans of 1.3 meters. They were tested with two-point line loads, one in the center of each span until they failed. Each slab received 3 Ø8 mm longitudinal steel reinforcement at the top and bottom, as well as Ø8 mm transverse steel reinforcement every 200 mm at the top and bottom of the short direction. The clear concrete cover had a thickness of 20 mm. The six slabs tested in this investigation were divided into two series based on the type of support. The first series consists of three slabs that are simply supported. One of them was prismatic, with a constant depth of 100 mm, and served as the series' reference slab (S1 specimen). The other two slabs, on the other hand, were non-prismatic with tapered cross-sections of variable depth. One of these two slabs had a positive haunch of 130 mm at the center of each span and 70 mm at the supports (S2 specimen). The other slab contains a negative haunch of 70 mm in depth at the middle and 130 mm at the supports (S3 specimen). The second series consists of three slabs with fixed-end supports having the same size and characteristics as the first series example. Figures 4 and 5 show examples of the first and second series of these slabs in terms of geometry, reinforcement, and tapering arrangement, respectively.

![Figure 4. Geometric and reinforcement details for simply supported two-span slabs](image-url)
2. Test setup

At Babylon University's Structural Engineering Laboratory, RC slabs were subjected to repeated loads till failure using a hydraulic testing machine with a capacity of 600 kN. Each slab was supported in its way. A spreader steel beam was used to apply a one-line load to the tested slab in the center of each span. To avoid local concrete crushing, bearing plates were employed at the supports and loading points. The machine utilized in the test is shown in full in Figure 6.
The load was applied in phases from zero to the final load. The applied load was raised by 20% of the intended ultimate load for each slab at each stage. As a result, the first stage was initiated from zero to 10% of the designed ultimate load, then back to zero, and the loading procedure was repeated five times. Up to 20% of the designed ultimate load was applied in the second stage. Up to 30% of the designed ultimate load was used in the next step. Each step was repeated five times, with the fourth stage increasing to 40% and so on until failure (see Figure 7).

![Figure 6. Loading protocol](image)

4. Results and discussion

Table 2 summarizes the load capacity and failure mechanisms of the examined slabs.

<table>
<thead>
<tr>
<th>Specimen designation</th>
<th>Sagging region</th>
<th>Hogging region</th>
<th>Deflection at service (mm)</th>
<th>Max deflection (mm)</th>
<th>Crack width at service (mm)</th>
<th>Failure mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>5.75</td>
<td>5</td>
<td>41</td>
<td>4**</td>
<td>14.62</td>
<td>Flexural tension</td>
</tr>
<tr>
<td>S2</td>
<td>6.2</td>
<td>4</td>
<td>43</td>
<td>7.5**</td>
<td>23.9</td>
<td>Flexural tension</td>
</tr>
<tr>
<td>S3</td>
<td>5</td>
<td>7</td>
<td>39</td>
<td>6.5**</td>
<td>16.8</td>
<td>Flexural tension</td>
</tr>
<tr>
<td>S4</td>
<td>7</td>
<td>6</td>
<td>55</td>
<td>2.5</td>
<td>18</td>
<td>Flexural tension</td>
</tr>
<tr>
<td>S5</td>
<td>7.75</td>
<td>5.5</td>
<td>54</td>
<td>4**</td>
<td>21.2</td>
<td>Flexural tension</td>
</tr>
<tr>
<td>S6</td>
<td>6.5</td>
<td>8</td>
<td>54</td>
<td>3.3</td>
<td>19.32</td>
<td>Flexural tension</td>
</tr>
</tbody>
</table>

* Assumed service load = 60% from the ultimate load of each slab
* Did not satisfy the limitation of ACI 318 – 11 [18] (δall = 3.61 mm)

The following sections cover the observation of specimens during the tests as well as comprehensive comments:
4.1. Load – Deflection response and ultimate loads
The mid-span deflection of slabs in this investigation was measured using a vertical dial gauge positioned in the centre of each span. Only the one that recorded the greatest deflection was included in the research to determine the span's load capacity. The load-midspan deflection curves for all the slabs evaluated in this investigation are shown in Figure 8. At the initial step of loading (no crack stage), there was generally negligible deflection. Figure 8 indicates that in the early stages of loading, all specimens exhibit a relatively small initial similar branch. In comparison to the prismatic slab, the deflection of the tapered slab increases as the applied load increases.

The load-deflection response of slabs with fixed end supports was stiffer than that of slabs with simple end supports, as predicted; nevertheless, prismatic slabs were stiffer than non-prismatic slabs in all support circumstances due to the presence of a negative moment. Thus, The flexural stiffness was altered, and the internal moment capacity was reduced, whether the reduction in slab thickness happened in the positive moment at the mid-span (negative haunch) or in the negative moment at the middle support (positive haunch).

![Figure 8](image)

Figure 8. Experimental Load - Midspan deflection curves for slabs: (a) Effect of tapering configuration; (b) Effect of the support condition

It must be mentioned here that all slabs have the same span length, thus, the limitations of ACI 318-19 for immediate deflection due to maximum live load are the same for all slabs. The ultimate load capacity (Pu), the mid-span deflection at service load, and the mid-span deflection at ultimate loads for two-span slabs are presented in Table 2. In terms of support, it was discovered that employing fixed support at both ends in S4 specimens boosted ultimate load capacity in comparison to simply supported slabs. When compared to a prismatic slab, the tapered slab with a positive or negative haunch does not affect bearing capacity. It also generated a considerable increase in deflection at service load. The large increase in deflection under service load could be attributable to the reduction in slab thickness at critical sections (highest positive or negative moment), which gives the slabs a tapered form that influences their stiffness.

4.2. Cracking behavior and modes of failure

In the early stages of loading, reinforced concrete slabs are structurally sound. The first crack was seen in the tension face of the sagging or hogging region when the applied load reached the first cracking load, which was between 9% and 15% of the ultimate load. Following that, flexural cracks appeared and developed parallel to the crack, progressively spreading throughout the thickness of the slab. When the magnitude of the load or the frequency of the repeated load increased, the stiffness of the slab models dropped (plastic stage). All of the specimens in this investigation failed in a flexural mode. This occurs after the tensile steel in the sagging and hogging regions was yielded, as demonstrated by the rapid growth in the breadth of certain cracks in these regions. Concrete was crushed at the top face of the specimen at the mid-span portion and the bottom face over the middle support when the tensile steel yielded. Figure 9 shows photos of the control S4 specimen at failure.
Observations of fracture development were done over the whole length of the slabs at each load level. Figure 10 shows the usual fracture patterns and failure causes found in simply and fixed supported slabs.

Table 2 shows that as the slab depth grew so did the required load for producing the first fracture and vice versa. As a result, utilizing a non-prismatic slab with a negative haunch reduced the sagging zone's initial cracking stress while increasing it in the hogging region. This is because the concrete depth variation in the crucial section affects the moment of inertia and stiffness. For all slabs, the first crack width was determined to be almost 0.02 mm. According to Table 2, using a negative haunch for both types of support conditions resulted in a wider first crack at service load than the accepted limits of ACI 318-19 (0.4 mm).

4.3. Ductility
A structural member's ductility can be defined as the capacity of the member to withstand substantial deflection before failing. This feature is critical for structural elements subjected to seismic loads because it indicates failure before the incident, beyond yielding. Deflection ductility index (d) and energy absorption index (EAI) were two ductility definitions examined in this investigation. The energy absorption index is the ratio of the total area under the load-deflection curve to that under the elastic part only, while the deflection ductility index is the ratio of the deflection at the ultimate load of the slab to the deflection at yielding of the longitudinal tensile reinforcement (up to the yielding point). As a result, determining the load-deflection curve's yielding point is critical [19]. In the literature, there are several methods for estimating the yielding displacement. A technique originally presented by [20-23] is used in this investigation. As shown in Figure 11, y is the yield displacement of the corresponding elasto-plastic system with decreased stiffness calculated as the secant stiffness at 75% of the real system's ultimate load. Eq. 1 determines the deflection ductility index and Eq. 2 calculates the energy absorption index which are used in this research to represent this technique.

Deflection ductility index, \(\mu_d = \frac{\delta_u}{\delta_y} \)

Figure 9. Photos of the control S9 specimen at failure: (a) Failure of mid-span section (sagging region); (b) Failure of section over central support (hogging region)

Figure 10. Typical Cracks pattern at failure for slabs of this study: (a) Cracks pattern for non-prismatic simply supported slab with positive haunch (S2 specimen); (b) Cracks pattern for non-prismatic fixed end support slab with positive haunch (S5 specimen)
Energy absorption index, \(\text{EAI} = \frac{A_1 + A_2}{A_1} \) \quad (2)

Figure 11. Typical diagram for determining the ductility index of RC slabs

The results of the deflection ductility index and energy absorption index with all the parameters that are required to determine them for slabs of this study are presented in Table 3.

<table>
<thead>
<tr>
<th>Beam designation</th>
<th>Yield deflection δy (mm)</th>
<th>Deflection at Ultimate load δu (mm)</th>
<th>Deflection ductility index μd</th>
<th>Elastic area A1 (kN.mm)</th>
<th>Plastic area A2 (kN.mm)</th>
<th>Total area A1+A2 (kN.mm)</th>
<th>Energy absorption index (EAI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>9.5</td>
<td>14.62</td>
<td>1.53</td>
<td>217.5</td>
<td>189</td>
<td>406.5</td>
<td>1.86</td>
</tr>
<tr>
<td>S7</td>
<td>15.33</td>
<td>23.9</td>
<td>1.56</td>
<td>366</td>
<td>356</td>
<td>722</td>
<td>1.97</td>
</tr>
<tr>
<td>S8</td>
<td>11.33</td>
<td>16.8</td>
<td>1.48</td>
<td>230</td>
<td>204</td>
<td>434</td>
<td>1.88</td>
</tr>
<tr>
<td>S9</td>
<td>6.2</td>
<td>18</td>
<td>2.9</td>
<td>194</td>
<td>628</td>
<td>822</td>
<td>4.23</td>
</tr>
<tr>
<td>S10</td>
<td>8</td>
<td>21.2</td>
<td>2.65</td>
<td>237</td>
<td>670</td>
<td>907</td>
<td>3.8</td>
</tr>
<tr>
<td>S11</td>
<td>7</td>
<td>19.32</td>
<td>2.76</td>
<td>207</td>
<td>635</td>
<td>842</td>
<td>4.06</td>
</tr>
</tbody>
</table>

The predicted values of the energy absorption index for the corresponding tested specimens were practically identical to the deflection ductility index. It should be noted that using the tapered slab instead of the prismatic slab does not affect the ductility index. Besides, the higher ductility of fixed end specimens compared to simply support specimens could be attributed to the slab's higher stiffness during the first stage of loading, and vice versa at the plastic stage.

5. Conclusions
1. Because of their superior stiffness and almost equal load-carrying capability, prismatic continuous one-way slabs are preferred over non-prismatic ones.
2. Providing tapered slabs with positive or negative haunch has an insignificant effect on the bearing capacity with respect to prismatic slabs.
3. When compared to prismatic slab, providing tapered slab resulted in a considerable increase in deflection at service load. The reduction in slab thickness at the critical section (maximum positive or negative moment) by providing a tapered shape that impacts slab stiffness is linked to the large increase in deflection at service load.
4. The negative haunch caused an increase in the width of the first crack at service load more than the accepted limits of ACI 318-19.
5. Using a tapered slab instead of the prismatic slab has an insignificant effect on the ductility index.
6. Values of the energy absorption index were almost compatible with the deflection ductility index for the corresponding tested specimens.

Declaration of competing interest
The authors declare that they have no any known financial or non-financial competing interests in any material discussed in this paper.

Funding information
No funding was received from any financial organization to conduct this research.

References
based design,” in 13th World Conference of Earthquake Engineering (WCEE), 2004, no. 2888.

