Recent developments of metallic implants for biomedical applications
Abstract
Keywords
Full Text:
PDFReferences
Shi H, Tsai W-B, Garrison MD, S. Ferrari and Ratner BD, Template imprinted nanostructured surfaces for protein recognition, Nature, 15 April 1999, Vol. 398, No. 6728, pp. 593-597.
Senior K. Artificial implants: making the marriage work, The Lancet, 14th August 1999, Vol. 354, No. 9178.
Lawrence, K.J. Anisotropy of Young’s modulus of bone. Nature 1980, 283, 106–107.
Black, J.; Hastings, G.W. Handbook of Biomaterials Properties; Chapman and Hall: London, UK, 1998. 5. Alvarado, J.; Maldonado, R.; Marxuach, J.; Otero, R. Biomechanics of hip and knee prostheses. Appl. Eng. Mechan. Med. GED–Univ. Puerto Rico Mayaguez 2003, 6, 22.
Hallab, N.J.; Anderson, S.; Stafford, T.; Glant, T.; Jacobs, J.J. Lymphocyte responses in patients with total hip arthroplasty. J. Orthop. Res. 2005, 23, 384–391.
Branemark, P.I. Osseointegration and its experimental background. J. Pros. Dent. 1983, 50, 399‒410.
Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Progr. Mater. Sci. 2009, 54, 397–425.
Viceconti, M.; Muccini, R.; Bernakiewicz, M.; Baleani, M.; Cristofolini, L. Large-sliding contact elements accurately predict levels of bone–implant micromotion relevant to osseointegration. J. Biomech. 2000, 33, 1611–1618.
Wennerberg, A.; Albrektsson, T.; Jimbo, R. Implant Surfaces and Their Biological and Clinical Impact, 1st ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2015; p. 168.
Barfeie, A.; Wilson, J.; Rees, J. Implant surface characteristics and their effect on osseointegration. Br. Dental J. 2015, 218, 1–9.
Teoh, S.H. Fatigue of biomaterials: A review. Int. J. Fatigue 2000, 22, 825‒837.
Park, J.; Lakes, R.S. Biomaterials an Introduction, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007.
Niinomi, M. Metallic biomaterials. J. Artif. Organs 2008, 11, 105–110.
Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 2002, 33, 477‒486.
Rokkum M, Bye K, Hetland KR, et al. Stem fracture with the exeter prosthesis 3 of 27 hips followed for 10 years. Acta Orthop Scand. 1995; 66:435–439.
Davis JR. Handbook of materials for medical devices. 1st ed. Geauga: ASM international; 2003. Chapter 3, Metallic materials; p. 22–30.
Piehler HR. Pluralistic medical device risk management: standards, regulation, and litigation. In: Fraker AC, Griffin CD, editors. Corrosion and degradation of implant materials: second symposium. Pennsylvania: ASTM International; 1985. p. 1–10.
Zhang F, Kang ET, Neoh KG, et al. Surface modification of stainless steel by grafting of poly (ethylene glycol) for reduction in protein adsorption. Biomaterials 2001; 22:1541–1548.
Kang CK, Lee YS. The surface modification of stainless steel and the correlation between the surface properties and protein adsorption. J Mater Sci Mater Med. 2007; 18:1389–1398.
Thomann UI, Uggowitzer PJ. Wear–corrosion behavior of biocompatible austenitic stainless steels. Wear 2000; 239:48–58.
Liu DM, Yang Q, Troczynski T. Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 2002; 23:691–698.
Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R. 2015; 87:1–57.
Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010; 6:1680– 1692.
Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006; 27:1728–1734.
Hermawan H, Dube D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010; 6:1693–1697.
Rude RK. Magnesium deficiency: a cause of heterogenous disease in humans. J Bone Miner Res. 1998; 13:749–758.
Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys – a review. Acta Biomater. 2012; 8:2442–2455.
Eliezer D, Aghion E, Froes FS. Magnesium science, technology and applications. Adv Perform Mater. 1998; 5:201–212.
Liu N, Huang WM. DSC study on temperature memory effect of NiTi shape memory alloy. Trans Nonferrous Met Soc China. 2006; 16:s37–s41.
Wang H, Estrin Y, Zuberova Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater Lett. 2008; 62:2476–2479.
Gray JE, Luan B. Protective coatings on magnesium and its alloys – a critical review. J alloys compd. 2002; 336:88–113.
Razavi M, Fathi M, Savabi O, et al. Controlling the degradation rate of bioactive magnesium implants by electrophoretic deposition of akermanite coating. Ceram Int. 2014; 40:3865–3872.
Chen XB, Nisbet DR, Li RW, et al. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating. Acta Biomater. 2014; 10:1463–1474.
Kannan MB. Enhancing the performance of calcium phosphate coating on magnesium alloy for bioimplant applications. Mater Lett. 2012; 76:109–112.
Lu Y, Tan L, Xiang H, et al. Fabrication and characterization of Ca–Mg–P containing coating on pure magnesium. J Mater Sci Technol. 2012; 28:636– 641.
Lu Y, Tan L, Zhang B, et al. Synthesis and characterization of Ca–Sr–P coating on pure magnesium for biomedical application. Ceram Int. 2014; 40:4559–4565.
Mahapatro A, Matos Negron TD, Gomes AS. Nanostructured self-assembled monolayers on magnesium for improved biological performance. Mater Technol. 2016; 31:818–827
Ratner, J.B.B.D.; Hoffman, A.S.; Shoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine; Academic Press: Waltham, MA, USA, 1996; pp. 37–50.
Addison, O., Davenport, A. J., Newport, R. J., Kalra, S., Monir, M. et al. ( 2012 ) Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear? Journal of The Royal Society Interface, 7, 3161 – 4.
Cvijović-Alagić, I., Cvijović, Z., Mitrović, S., Panić , V. and Rakin, M. ( 2011 ) Wear and corrosion behavior of Ti-13Nb-13Zr and Ti-6Al-4V alloys in simulated physiological solution, Corrosion Science, 53, 796 – 808
Diomidis, N., Mischler, S., More, N. S. and Roy, M. ( 2012 ) Tribo- electrochemical characterization of metallic biomaterials for total joint replacement, Acta Biomaterialia, 8, 852 – 9.
More, N. S., Diomidis, N., Paul, S. N., Roy, M. and Mischler, S. ( 2011 ) Tribocorrosion behavior of β -titanium alloys in physiological solutions containing synovial components, Materials Science and Engineering: C, 31, 400 – 8.
Nakada, H., Numata, Y., Sakae, T., Okazaki, Y., Tanimoto, Y. et al. ( 2008 ) Comparison of bone mineral density and area of newly formed bone around Ti-15%Zr-4%Nb-4%Ta alloy and Ti-6%A1-4%V alloy implants, Journal of Hard Tissue Biology, 17, 99 – 108 .
Li, S. J., Yang, R., Li, S., Hao, Y. L., Cui, Y. Y. et al. ( 2004 ) Wear characteristics of Ti-NbTa-Zr and Ti-6Al-4V alloys for biomedical applications, Wear, 257, 869 – 76 .
Fukuda, A., Takemoto, M., Saito, T., Fujibayashi, S., Neo, M. et al. ( 2011 ) Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments, Acta Biomaterialia, 7, 1379 – 86 .
Niinomi, M. and Hattori, T. ( 2010 ) Effect of Young’s modulus in metallic implants on atrophy and bone remodeling. In: Sasano, T. and Suzuki, O. eds), Interface Oral Health Science 2009, Osaka, Japan, Springer Japan.
Minagar, S., Berndt, C. C., Wang, J., Ivanova, E. and Wen, C. ( 2012 ) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomaterialia, 8, 2875 – 88.
Niinomi, M. ( 2008 ) Mechanical biocompatibilities of titanium alloys for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, 1, 30 – 42.
Long, M. and Rack, H. J. ( 1998 ) Titanium alloys in total joint replacement: A materials science perspective, Biomaterials, 19, 1621 – 39.
Majumdar, P., Singh, S. B. and Chakraborty, M. ( 2011 ) The influence of heat treatment and role of boron on sliding wear behavior of type Ti-35Nb-7.2Zr-5.7Ta alloy in dry condition and in simulated body fluids, Journal of the Mechanical Behavior of Biomedical Materials, 4, 284 – 97.
Manhabosco, T. M., Tamborim, S. M., Dos Santos, C. B. and Müller, I. L. ( 2011 ) Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution, Corrosion Science, 53, 1786 – 93.
Martini, C., Ceschini, L., Casadei, B., Boromei, I. and Guion, J. B. ( 2011 ) Dry sliding behavior of hydrogenated amorphous carbon (a-C:H) coatings on Ti-6Al-4V, Wear, 271, 2025 – 36.
Lausmaa, J. ( 1996 ) Surface spectroscopic characterization of titanium implant materials, Journal of Electron Spectroscopy and Related Phenomena, 81, 343 – 61
Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Characterization of biomedical Ti-16Nb-(0–4)Sn alloys produced by Powder Injection Molding”, Vacuum, Vol. 142, August 2017, pp. 164-174.
Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Assessment of Ti–16Nb–xZr alloys produced via PIM for implant applications”, Journal of Thermal, Analysis and Calorimetry, Vol: 134, issue: 1, pp. 7-14, Oct. 2018.
Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Metallurgical properties and biomimetic HA deposition performance of Ti-Nb PIM alloys”, Journal of Alloys and Componds, Vol. 746, pp. 301-313, May 2018.
Yılmaz E, Gökçe A, Findik F, Gulsoy O, Iyibilgin O. “Mechanical properties And electrochemical behavior of porous Ti-Nb biomaterials”, J. of the Mechanical Behavior of Biomedical Materials”, Vol. 87, pp. 59-67, November 2018.
Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Powder Metallurgy Processing of Ti-Nb Based Biomedical Alloys”, Acta Physica Polonica A, Vol. 134, Issue 1, pp. 278-280, July 2018.
Mehl, C., Lang, B., Kappert, H. and Kern, M. ( 2011 ) Microstructure analysis of dental castings used in fixed dental prostheses: A simple method for quality control, Clinical Oral Investigations, 15, 383 – 91
Ucar, Y., Brantley, W. A., Johnston, W. M., Iijima, M., Han, D. S. and Dasgupta, T. ( 2011 ) Microstructure, elemental composition, hardness and crystal structure study of the interface between a noble implant component and cast noble alloys, The Journal of Prosthetic Dentistry, 106, 170 – 8.
Guo, W. H., Brantley, W. A., Clark, W. A.T., Monaghan, P. and Mills, M. J. ( 2003 ) Transmission electron microscopic investigation of a Pd-Ag-In-Sn dental alloy, Biomaterials, 24, 1705 – 12.
Ucar, Y., Brantley, W. A., Johnston, W. M. and Dasgupta, T. ( 2011 ) Mechanical properties, fracture surface characterization, and microstructural analysis of six noble dental casting alloys, The Journal of Prosthetic Dentistry, 105, 394 – 402.
Soares, A. C. and Cavalheiro, A. ( 2010 ) A review of amalgam and composite longevity of posterior restorations, Revista Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial, 51, 155 – 64.
Ye, X., Qian, H., Xu, P., Zhu, L., Longnecker, M. P. and Fu, H. ( 2009 ) Nephrotoxicity, neurotoxicity, and mercury exposure among children with and without dental amalgam fillings, International Journal of Hygiene and Environmental Health, 212, 378 – 86.
Clarkson, T. W. and Magos, L. ( 2006 ) The toxicology of mercury and its chemical compounds, Critical Reviews in Toxicology, 36, 609 – 62.
Scholtanus, J. D., Özcan, M. and Huysmans, M. C., ( 2009 ) Penetration of amalgam constituents into dentine, Journal of Dentistry, 37, 366 – 73.
Bates, M. N. ( 2006 ) Mercury amalgam dental fillings: An epidemiologic assessment, International Journal of Hygiene and Environmental Health, 209, 309 – 16.
Bellinger, D. C., Trachtenberg, F., Zhang, A., Tavares, M., Daniel, D. and Mckinlay, S. ( 2008 ) Dental amalgam and psychosocial status: The New England Children’s Amalgam Trial, Journal of Dental Research, 87, 470 – 4.
Shimizu, Y., Yamamoto, A., Mukai, T., Shirai, Y., Kano, M. et al. ( 2010 ) Medical application of magnesium and its alloys as degradable biomaterials. In: Sasano, T. and Suzuki, O. (eds), Interface Oral Health Science 2009, Osaka, Japan, Springer Japan.
Xin, Y., Hu, T. and Chu, P. K. ( 2011 ) In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review, Acta Biomaterialia , 7, 1452 – 9.
Waksman, R., Erbel, R., Di Mario, C., Bartunek, J., De Bruyne, B. et al. ( 2009 ) Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries, JACC: Cardiovascular Interventions, 2, 312 – 20.
Willbold, E., Kaya, A. A., Kaya, R. A., Beckmann, F. and Witte, F. ( 2011 ) Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site, Materials Science and Engineering: B, 176, 1835 – 40.
Pierson, D., Edick, J., Tauscher, A., Pokorney, E., Bowen, P. et al. ( 2012 ) A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B, 58 – 67.
Seitz, J. M., Eifler, R., Stahl, J., Kietzmann, M. and Bach, F. W. ( 2012 ) Characterization of MgNd 2 alloy for potential applications in bioresorbable implantable devices, Acta Biomaterialia, 8, 3852 – 64.
Findik F, Iyibilgin O et al. (2016) “Metal Alloy Stent Placed Into Vein And A New Method For Production of This Stent”, Turk Patent Institute, Record No: 2016 05339
Schwartz Zvi, Boyan BD. Underlying mechanisms at the bone-bomaterial interface. J Cell Biochem 1994; 56: 340-7.
Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials 1999; 20: 2311-2.
Buser D, Schenk RK et al. Influence of surface characteristics on bone integration of Ti implants J Biomed Mater Res 1991; 25: 889-902.
Gotfredsen K, Hjorting-Nansen E, Budtz-Jorgensen E. Clinical and radiographic evaluation of submerged and nonsubmerged implants in monkeys. In J Prosthodont 1990; 3: 4639.
Kieswetter K et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells J Biomed Mater Res 1996; 32: 55-63.
Wennerberg A, Hallgren C et al. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughness. Clin Oral Implants Res 1998; 9: 119.
Hannson S, orton M. The relation between surface roughness and interfacial shear strength for one-anchored implants. A mathematical model. J Biomech 1999; 32: 829-36.
Albrektsson T, Wennerberg A. Oral implant surfaces. Int J Prosth 2004; 17: 536-43.
Wennerberg A et al. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int J Oral Maxillo Implants 1997; 12: 486-94.
Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Biomedical porous Ti-16Nb-10Zr-(0-15)Ta alloys”, International Journal of Materials Research Vol: 110 Issue: 4 pp: 375-378 APR 2019
Yılmaz E, Gökçe A, Findik F, Gulsoy O. “Influence of Zr addition on the corrosion behavior of biomedical PIM Ti-16Nb alloy in SBF”, International Journal of Materials Research Volume: 110 Issue: 4 Pages: 379-381 Published: APR
Yılmaz, E., Çakıroğlu, B., Gökçe, A., Findik, F., Gulsoy, H.O., Gulsoy, N., Mutlu, Ö., Özacar, M. “Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition”, Materials Science and Engineering C, Volume 101, August 2019, Pages 292-305
Landolt D, Chauvy PF, Zinger O. Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments. Electrochim Acta 2003; 48: 3185–201.
Anselme K, Bigerelle M, Noel B, Iost A, Hardouin P. Effect of grooved titanium substratum on human osteoblastic cell growth. J Biomed Mater Res 2002; 60: 529–40.
Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999; 20: 573–88.
DOI: http://dx.doi.org/10.21533/pen.v8i1.988
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Fehim Findik

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2303-4521
Digital Object Identifier DOI: 10.21533/pen
This work is licensed under a Creative Commons Attribution 4.0 International License