Detection of some virulence factors of Salmonella typhi isolated from patients' blood by PCR and Phylogenetic tree

Najlaa Abdullah D. AL-Oqaili D. AL-Oqaili

Abstract


Typhoid fever is brought about by Salmonella enterice serovar typhi, which is a significant general medical issue in many developing nations. The severity the pathogenesis depends on Salmonellaʼs possession of cytolethal distending toxin (CDT) and virulence factors such as fimbriae adhesions, which are important in the adherence, invasion and the development of typhoid fever, was as diagnosed serologically as well as diagnosis of Salmonella typhi causing these fever based on phenotypic and cultural characteristics. Therefore, the coding genes of CdtB protein and fimbriae were detected in molecular methods by PCR technique using special primers. while, the fim gene was 84.21% and CdtB gene was 100%. DNA sequencing was performed and this confirms the isolation obtained in our study. In addition, the phylogenetic tree was analyzed and registered at the gene bank site, where the sequence identity rate fim gene 99.26%, while sequence identity rate for CdtB gene was 99.31%.

Keywords


Salmonella typhi fim gene and CdtB gene, phylogenetic tree and genome sequencing.

Full Text:

PDF

References


M. A. Clark, M. A. Jepson, N. L. Simmons, and B. H. Hirst. Preferential interaction of Salmonella typhimurium with mouse Peyer’s patch M cells. Res. Microbiol. 145, 543–552, 1994.

C.M. Parry, T. T. Hien , G. Dougan, N. J. White, J. J. Farrar. Typhoid fever. N Eng.l J. Med. 347(22):1770–1782, 2002.

J. A. Crump, E. D. Mintz . Global trends in typhoid and paratyphoid Fever. Clin. Infect. Dis. 50(2):241–246, 2010.

M. Raffatellu, R. P. Wilson, S. E. Winter, A. J. Bäumler. Clinical pathogenesis of typhoid fever. J. Infect. Dev. Ctries 2(4):260–266, 2008.

J. Wain , R. S. Hendriksen, M. L. Mikoleit , K. H. Keddy, R. L. Ochiai. Typhoid fever. Lancet 385(9973):1136–1145 ,2015.

G. Dougan , S. Baker . Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu. Rev. Microbiol. 68:317–336,2014.

J. A. Crump, and E. D. Mintz. Global trends in typhoid and paratyphoid fever. Clin. Infect.Dis. 50, 241-246, 2010.

W. Robert Crawford. Very long O-antigen chains enhance fitness during Salmonella-induced colitis by increasing bile resistance. Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, California, USAPLoS Pathog. 8: e1002918, 2012.

T. M. Wassenaar , and W. Gaastra . Bacterial virulence: can we draw the line. FEMS Microbiol. Lett, 201:1-7, 2001.

J. Wain, and S. Hosoglu. the laboratory diagnosis of enteric fever, Journal of Infectious Developing Countries, vol. 2, no. 6, pp. 421-425, 2008.

R. A. Edwards, D. M. Schifferli , and S. R. Maloy. A role for Salmonella fimbriae in intraperitoneal infections. Proc. Natl. Acad. Sci. U.S.A. 97,1258–1262, 2000.

I.S. Tsui , C. M. Yip, J. Hackett, and C. Morris . The type IVB pili of Salmonella enterica serovar Typhi bind to the cystic fibrosis transmembrane conductance regulator. Infect. Immun. 71, 6049–6050, 2003.

E. H. Weening, J. D. Barker, M .C. Laarakker, A. D. Humphries, R. M. Tsolis, and A. J. Bäumler, The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistencein mice. Infect. Immun. 73, 3358–3366 ,2005.

N. A. Ledeboer, J.G. Frye, M. McClelland, and B. D. Jones. Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect. Immun. 74, 3156–3169, 2006.

K. Dufresne, J. Saulnier-Bellemare, and F. Daigle . Functional Analysis of the Chaperone-Usher Fimbrial Gene Clusters of Salmonella enterica serovar Typhi. Front Cell Infect. Microbiol. 8:26, 2018.

M. Lara-Tejero, and J. F. Galan. Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. 10(3): 147-152 ,2002.

M. Lara-Tejero, and J.F. Galan. immunity, CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. 69(7):4358-4365 , 2001.

M. Lara-Tejero, M. and J. F. Galan. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. 290(5490): 354-357, 2000.

C. A. Elwell, and L. A. Dreyfus. DNase I homologous residues in CdtB are critical for cytolethal distending toxin‐mediated cell cycle arrest. 37(4):952-963, 2000.

D. A. Scott, and J. Kaper . Immunity, Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. 62(1): 244-251 , 1994.

C. L. Pickett, et al. Cloning, sequencing, and expression of the Escherichia coli cytolethal distending toxin genes. 62(3):1046-1051, 1994.

J. Parkhill, et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18.413(6858):848, 2001.

W. Deng, et al.Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. 185(7):2330-2337 ,2003.

E. Haghjoo, J. E. Galn. Salmonella Typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial internalization pathway. Proc. Natl. Acad. Sci. USA 101:4614-4619, 2004.

R. N. Jinadasa , S. E. Bloom, R. S. Weiss, G. E. Duhamel. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology 157:1851–1875, 2011.

J. F. Macfaddin . Biochemical Tests for Identification of Medical Bacteria. 3rd ed. Lippincott Williams and Wilkins, USA , 2000.

J.C. Collee, A. G. Fraser, B. P. Marmiam, and S. A. Simmon . Mackie and McCartney; Practical Medical Microbiology. 24th ed. The Churchill Livingstone. Inc. USA , 1996.

S. K. Saha, M. Ruhulamin, M. Hanif, M. Islam. and A. Khan. Interpretation of the Widal test in the diagnosis of typhoid fever in Bangladeshi children. Ann. Trop.Paediatr. 16, 75-78 1,2, 1996.

C. A. Scherer, and S. I. Miller. Molecular pathogenesis of Salmonellae In Principles of Bacterial Pathogenesis Principles of Bacterial Pathogenesis, Groisman, E. A. (Ed). Academic Press, United States of America; pp:265-316, 2001.

H. A. Talabi, H. A. Medical aspects of typhoid fever in Nigeria. Nig. Post grad. Med. J.1:51-56, 1994.

K. O. Akinyemi, S. I. Smith, A. O. Oyefolu, A. O. Coker. Multidrug resistance in Salmonella enterica serovar Typhi isolated from patients with typhoid fever complications in Lagos, Nigeria. Public Health 119:321-327, 2005.

K. J. Dufresne and F. Daigle. Functional Analysis of the Chaperone-Usher Fimbrial Gene Clusters of Salmonella enterica serovar Typhi. Front Cell Infect. Microbiol., 8:26, 2018.

K. P. Yap, et al. Global MLST of Salmonella Typhi Revisited in Post-Genomic Era: Genetic Conservation, Population Structure, and Comparative Genomics of Rare Sequence Types. Front Microbiol.,7: 270, 2016.

B.J. Shenker, T. L. McKay, S. Datar, M. Miller, R. Chowhan, and D. R. Demuth. Actinobacillus actinomycetemcomitans immunosuppressive protein is a member of the family of cytolethal distending toxins capable of causing a G2 arrest in human T cells. J. Immun. 162,4773–4780, 1999.

Z. Ge , Y. Feng, M. T. Whary, P. R. Nambiar, S. Xu ,et al.Cytolethal distending toxin is essential for Helicobacter hepaticus colonization in outbred Swiss Webster mice. Cell. microbial. 73,201–206, 2005.

J. M. DiRienzo . Breaking the gingival epithelia barrier: role of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin in oral infectious disease. Cells 3:476-499, 2014.

E. Haghjoo, and J. E. Galan . Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc.Natl. Acad. Sci. USA. 101(13): 4614-9, 2006.

F. Chantal, P. F. Sebastien, P. Katherine , H. Sebastien, M. D. Charles, D. France. Contribution of the stg fimbrial operon of Salmonella enterica serovar Typhi during interaction with human cell. Infect. Immun. 75: 5264-5271, 2007.

E. Haghjoo, and J. E. Galán. Salmonella typhi encode a functional cytolethal distending toxin that is delivered into host cells by a bacterial- internalization pathway. Proc. Natl. Acad. Sci. U.S.A. 101:4614-4619, 2004.

J. Suez, S. Porwollik, A. Dagan, A. Marzel, Y. Schorr, P. Desai, et al. Virulence gene profiling and pathogenicity characterization of non-typhoidal Salmonella accounted for invasive disease in humans. PLoS ONE 8: e58449 ,2013.

R. Figueiredo, R. Card, C. Nunes , M. AbuOun, M. C. Bagnall, J. Nunez, et al. Virulence characterization of Salmonella enterica by a New microarray: detection and evaluation of the cytolethal distending toxin gene activity in the unusual host S. Typhimurium. PLoS ONE 10: e0135010, 2015.

J. Parkhill, et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413(6858):848-852, 2001.

S. Baker, G. Dougan. The genome of Salmonella enterica serovar Typhi. Clin. Infect. Dis. 45(1): S29-S33, 2007.

M. Achtman. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu. Rev. Microbiol. 62:53–70 ,2008.

M. E. Ohl, S. L. Miller. Salmonella: A model for bacterial pathogenesis. Annu. Rev. Med. 52:259–274, 2001.

G. A. Grassl, and B. B. Finlay. Pathogenesis of enteric Salmonella infections. Curr. Opin Gastroenterol. 24(1):22–26 , 2008.

M. D. Scuron, et al. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting as a Tri-Perditious Toxin. Front Cell Infect. Microbiol, 6:168, 2016.




DOI: http://dx.doi.org/10.21533/pen.v7i4.941

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Najlaa Abdullah D. AL-Oqaili D. AL-Oqaili

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License