Dynamic filtering of malicious records using machine learning integrated databases
Abstract
Keywords
Full Text:
PDFReferences
K. Bayoude, Y. Ouassit, S. Ardchir, and M. Azouazi, “How Machine Learning Potentials are transforming the Practice of Digital Marketing: State of the Art,” Period. Eng. Nat. Sci., vol. 6, no. 2, pp. 373–379, 2018.
[A. S. Abdullah, M. A. Abed, and I. Al Barazanchi, “Improving face recognition by elman neural network using curvelet transform and HSI color space,” Period. Eng. Nat. Sci., vol. 7, no. 2, pp. 430–437, 2019.
I. A. Witten, E. Frank , M. A. Hall, & C.J. Pal . Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann,2016.
V. V. Thendral Tharmalingam, “An Efficient Convolutional Neural Network Based Classifier to Predict Tamil Writer,” Period. Eng. Nat. Sci., vol. 6, no. 1, pp. 285–295, 2018.
X. Meng, J. Bradley, B. Yavuz , E. Sparks, S. Venkataraman , D. Liu, et al. Mllib: Machine learning in apache spark. The Journal of Machine Learning Research, 17(1), 1235-1241,2016.
S. Rashid, A. Ahmed, I. Al Barazanchi, and Z. A. Jaaz, “Clustering algorithms subjected to K-mean and gaussian mixture model on multidimensional data set,” Period. Eng. Nat. Sci., vol. 7, no. 2, pp. 448–457, 2019.
M. I. Jordan, & T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260,2015.
S. Sra, S. Nowozin, & S. J. Wright. (Eds.). Optimization for machine learning. Mit Press,2012.
T. C. Smith, & E. Frank. Introducing machine learning concepts with WEKA. In Statistical genomics (pp. 353-378). Humana Press, New York, NY,2016.
L. Kotthoff , C. Thornton , H. H. Hoos, F. Hutter, & K. Leyton-Brown. Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA. The Journal of Machine Learning Research, 18(1), 826-830,2017.
M. Feurer, A. Klein , K. Eggensperger, J. Springenberg, M. Blum, & F. Hutter. Efficient and robust automated machine learning. In Advances in neural information processing systems , pp. 2962-2970,2015.
J. Read, P. Reutemann, B. Pfahringer, & G. Holmes. Meka: a multi-label/multi-target extension to weka. The Journal of Machine Learning Research, 17(1), 667-671,2016.
R.R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N.A. Mehta, & A.G. Gray. MLPACK: A scalable C++ machine learning library. Journal of Machine Learning Research, 14(Mar), 801-805,2013.
J. Brownlee. Machine learning mastery. URL: http://machinelearningmastery. com/discover-feature-engineering-howtoengineer-features-and-how-to-getgood-at-it,2014.
R. Arora . Comparative analysis of classification algorithms on different datasets using WEKA. International Journal of Computer Applications, 54(13),2012.
T.C. Sharma, & M. Jain. WEKA approach for comparative study of classification algorithm. International Journal of Advanced Research in Computer and Communication Engineering, 2(4), 1925-1931,2013.
P. M. Domingos. A few useful things to know about machine learning. Commun. acm, 55(10), 78-87,2012.
A. Desai, & R. Sunil. Analysis of machine learning algorithms using WEKA. International Journal of Computer Applications, 975, 8887,2012.
S. Drazin, S., & M. Montag. Decision tree analysis using weka. Machine Learning-Project II, University of Miami, 1-3,2012.
DOI: http://dx.doi.org/10.21533/pen.v7i4.898
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Ahmed Abbood Ali, Ahmed Raee AL-Mhanawi, Aqeel Kamil Kadhim
This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2303-4521
Digital Object Identifier DOI: 10.21533/pen
This work is licensed under a Creative Commons Attribution 4.0 International License