Enhance density peak clustering algorithm for anomaly intrusion detection system
DOI:
https://doi.org/10.21533/pen.v9.i2.799Abstract
In this paper proposed new model of Density Peak Clustering algorithm to enhance clustering of intrusion attacks. The Anomaly Intrusion Detection System (AIDS) by using original density peak clustering algorithm shows the stable in result to be applied to data-mining module of the intrusion detection system. The proposed system depends on two objectives; the first objective is to analyzing the disadvantage of DPC; however, we propose a novel improvement of DPC algorithm by modifying the calculation of local density method based on cosine similarity instead of the cat off distance parameter to improve the operation of selecting the peak points. The second objective is using the Gaussian kernel measure as a distance metric instead of Euclidean distance to improve clustering of high-dimensional complex nonlinear inseparable network traffic data and reduce the noise. The experimentations evaluated with NSL-KDD dataset.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.




