A review on nanoparticle and protein interaction in biomedical applications

Jasmin Sutkovic, Amina Jašarević

Abstract


Nanoparticles are molecules with size depended chemical and pyhsical characteristics, enabling interesting and correlated approaches while dealing with fundamental biological questions. Nanoparticles are capable of strong and important interaction with other molecules. Many different nanoparticles are produced, with variety of different roles, but Gold nanoparticle as metal based beads, have specific importance due to their attractive physical and chemical properties, biocompatibility, and facile surface modification. In general, nanoparticles have the ability to interact with whole physiological surrounding once when they enter human body. In most of the cases, first molecule they interact with are proteins, which are the main constituens of human body and the driving force of most of the biological processes. This understanding of interaction between nanoparticles and proteins represents an important essence for secure and efficient application of nanoparticles. In this regards, several methods for nanoparticle-protein interaction were developed and analysed in this review. Further, this paper reviews the current scientific development in nanoparticle-protein interactions.

Keywords


Nanparticles (NPs), Goldnanoparticles (GNPs), Nanomedicine, Protein corona

Full Text:

PDF

References


Singh, V., Nair, S. P., & Aradhyam, G. K, Chemistry of conjugation to gold nanoparticles affects G-protein activity differently. J Nanobiotechnology,11(7) ,2013.

Shemetov, A. A., Nabiev, I., & Sukhanova, A, Molecular interaction of proteins and peptides with nanoparticles. ACS nano, 6(6), 4585-4602, 2012.

Qingxin Mu, Guibin Jiang, Lingxin Chen, Hongyu Zhou, Denis Fourches, Alexander Tropsha,and Bing Yan, Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems, Chem Re, 13; 114(15): 7740–7781, 2014.

Li, H., LaBean, T. H., & Leong, K. W, Nucleic acid-based nanoengineering: novel structures for biomedical applications. Interface Focus, rsfs20110040, 2011.

Tapan K. Jain, Marco A. Morales, Sanjeeb K. Sahoo, Diandra L. Leslie-Pelecky, Vinod Labhasetwar. Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents, Molecular Pharmaceutics, 2 (3), 194 -205, 2005.

Lacerda, S. H. D. P., Park, J. J., Meuse, C., Pristinski, D., Becker, M. L., Karim, A., & Douglas, J. F, Interaction of gold nanoparticles with common human blood proteins. ACS nano, 4(1), 365-379, 2009.

Rochelle Arvizo, Resham Bhattacharya, and Priyabrata Mukherjee. Gold nanoparticles: Opportunities and Challenges in Nanomedicine, Expert Opin Drug Deliv, 7(6): 753–763.2010.

Yang, Y., & Burkhard, P. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles. J Nanobiotech, 10, 42, 2012.

Lynch I and Dawson KA. Protein-nanoparticle interactions, Nano Today, 3:40–47, 2008.

Saptarshi, S. R., Duschl, A., & Lopata, A. L. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol, 11(1), 26, 2013.

Rahman, M., Laurent, S., Tawil, N., Yahia, L. H., & Mahmoudi, M. Nanoparticle and protein corona. In Protein-nanoparticle interactions, Springer Berlin Heidelberg, 21-44, 2013.

Zhu, Z. J., Posati, T., Moyano, D. F., Tang, R., Yan, B., Vachet, R. W., & Rotello, V. M. The interplay of monolayer structure and serum protein interactions on the cellular uptake of gold nanoparticles. Small, 8(17), 2659-2663, 2012.

Lynch I, Lundqvist M, Stigler J, Elia G, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA, 105:14265–14270, 2008.

Chatterjee, T., Chakraborti, S., Joshi, P., Singh, S. P., Gupta, V., & Chakrabarti, P. The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. Febs Journal, 277(20), 4184-4194, 2012.

Chao Y, Karmali PP, Simberg. Role of carbohydrate receptors in the macrophage uptake of dextran-coated iron oxide nanoparticles. Adv Exp Med Biol 733:115–123, 2012.

Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc, 133:2525–2534, 2011.

De M1, You CC, Srivastava S, Rotello VM. Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. J Am Chem Soc.129 (35):10747-53, 2007.

Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, Elia G, Dawson K. The evolution of the protein corona around nanoparticles: a test study. ACS Nano, 5:7503–7509, 2011.

Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano, 4:7481–7491, 2010.

Sabuncu AC, Grubbs J, Qian S, Abdel-Fattah TM, Stacey MW, Beskok A. Probing nanoparticle interactions in cell culture media. Colloids Surf B Biointerfaces, 15;95:96-102, 2012.

Hoefling, M., Monti, S., Corni, S., & Gottschalk, K. E. Interaction of β-sheet folds with a gold surface. PloS one, 6(6), e20925.2011.

Ye, M., Tang, L., Luo, M., Zhou, J., Guo, B., Liu, Y., & Chen, B. Size-and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal co-incubations. Nanoscale research letters, 9(1), 1-16, 2014.

Yang, M., Kostov, Y., Bruck, H. A., & Rasooly, A.Gold nanoparticle-based enhanced chemiluminescence immune sensor for detection of Staphylococcal Enterotoxin B (SEB) in food. International journal of food microbiology, 133(3), 265-271, 2009.

Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A., & McNeil, S. E, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced drug delivery reviews, 61(6), 428-437, 2009.

Schaefer, J., Schulze, C., Marxer, E. E. J., Schaefer, U. F., Wohlleben, W., Bakowsky, U., & Lehr, C. M. Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions. ACS nano, 6(6), 4603-4614, 2012.

Omanovic-Miklicanin, E., Valzacchi, S., Simoneau, C. Gilliland, D., & Rossi, F. Solid-phase micro extraction/gas chromatography–mass spectrometry method optimization for characterization of surface adsorption forces of nanoparticles. Analytical and bio-analytical chemistry, 406(26), 6629-6636, 2014.

Albert’s, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P.Molecular Biology of the Cell. New York: Garland Science; Classic textbook now in its 5th Edition, 2002.

Kamerzell, T. J., Esfandiary, R., Joshi, S. B., Middaugh, C. R., & Volkin, D. B. Protein–excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development. Advanced drug delivery reviews, 63(13), 1118-1159, 2011.

Turci F, Ghibaudi E, Colonna M, Boscolo B, Fenoglio I, Fubini B. An Integrated Approach to the Study of the Interaction between Proteins and Nanoparticles. Langmuir. 26:8336–8346, 2009.

Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799, 2012.

Q A Pankhurst, NTK Thanh, SKJones and J Dobson. Progress in applications of magnetic nanoparticles in biomedicine. Phys. D: Appl. Phys. 42, 224001 (15pp), 2009.

Nanoparticles as catalysts for protein fibrillation, National Academy of Science. Proc Natl Acad Sci U S A. 22; 104(21): 8679–8680, 2007.

Mahmoudi M, Kalhor HR, Laurent S, Lynch I Protein fibrillation and nanoparticle interactions: opportunities and challenges. Nanoscale. 7;5(7):2570-88, 2013.

Mahmoudi M, Monopoli MP, Rezaei M, Lynch I, Bertoli F, McManus JJ, Dawson KA. The protein corona mediates the impact of nanomaterials and slows amyloid beta fibrillation.Chembiochem.18;14(5):568-72, 2013.

Lauren E. Marbella and Jill E. Millston. NMR Techniques for Noble Metal Nanoparticles. Chem. Mater. 27 (8), 2721–2739, 2015.




DOI: http://dx.doi.org/10.21533/pen.v4i2.62

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Periodicals of Engineering and Natural Sciences (PEN)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License