Modeling of distributed power systems in 13 nodes IEEE electric grids

Andres Julian Aristizabal, Henry Giovanni Pinilla, Carlos Andres Forero

Abstract


This work aims to develop a model capable of evaluating the behavior of distributed energy resources in 13-nodes IEEE systems as a result of the change in the disconnector’s opening protocol that creates a power generation island. The first scenario simulated a failure in the 632-671 line isolating the subsystem into two 375 kVA distributed generation units (DG) in the nodes 675 and 652. Likewise, a second scenario considered the aperture of the disconnector located between nodes 671 and 692 representing a 375 kVA DG feeding a 900 kVA load. The last scenario produced a three-phase failure modeling two 500 kVA DG units in the nodes 634 and 646 supplying an 800 kVA load.

Keywords


Distributed Sources, Electric Simulation, Generation Model, Islanding Operation, Power Systems

Full Text:

PDF

References


J. E. Kim, H. K. Tetsuo and Y. Nishikawa, “Methods of determining introduction limits of Dispersed Generation systems in a distribution system”, Scripta Technica, Kyoto University, Japan, 1997.

F. Jurado, J. Carpio. “Enhancing the distribution networks stability using distributed generation”. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 24, No 1, 2005.

C. P. Lawrence, M. M. A. Salama and R. El Shatshat. “Studying the effects of distributed generation on voltage regulation”, International Journal of Electrical Engineer Education, Vol. 46, issue 1, 2008.

R. C. Dugan and T. E. McDermott, “Operating conflicts for distributed generation on distribution systems”, in Proc. IEEE Rural Electric Power Conference 2001, pp. A3/1–A3/6.

N. Mithulananthan and Than O. “Distributed generatos placement to maximize the loadability of a distribution system”, International Journal of Electrical Engineer Education, Vol. 43, issue 2, 2006.

Distribución Eléctrica Inteligente SILICE – Fase II, CODENSA, Universidad Nacional de Colombia, Universidad de los Andes, Colciencias, Septiembre de 2010.

H. Pinilla, A.J. Aristizábal. “Análisis en estable y transitorio de fuentes de generación distribuida operando en isla”, Revista Elementos, Numero 5, 2015.

Software Neplan. [En línea]. Disponible: http://www.neplan.ch/neplanproduct/en-electricity/

Abdel-Aziz A. Fouad Paul M. Anderson. Power System Control and Stability. IEEE Press, 2003.

W. H. Kersting. Radial distribution test feeders. Technical report, IEEE Distribution System Analysis Subcommittee, 2000.

IEEE Distribution Planning Working Group Report, “Radial distribution test feeders”, IEEE Transactioins on Power Systems,, August 1991, Volume 6, Number 3, pp 975-985.

IEEE Std 421.5-1992, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies.

Computer Representation of Excitation Systems, IEEE COMMITTEE REPORT, IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, VOL. P.AS-87, No. 6 JUNE 1968.




DOI: http://dx.doi.org/10.21533/pen.v4i2.55

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Periodicals of Engineering and Natural Sciences (PEN)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License