Trajectory optimization for mobile robots using model predictive control

Nicolae Pop, Luige Vladareanu, Marcel Migdalovici, Adrian I. Pop, Mihai Radulescu


The goal of this article is trajectory generation for biped robots based on Model Predictive Control (MPC) and the receding-horizon principle. Specifically, we want to minimize the error between the desired CoM and ZMP trajectory and the actual one and the cancellation of the shock gradient of the CoM and ZMP movements. Model predictive control (MPC) consist in a finite horizon optimal control scheme which uses a prediction model to predict vehicle response and future states, thus minimizing the current error and optimizing the future trajectory within the prediction horizon. The proposed algorithm will provide a trajectory of control inputs which will optimize the system states utilizing a quadratic form cost function similar to standard linear quadratic tracking. Specific to finite horizon control, the cost is summed over the finite prediction horizon of time length, rather than over an infinite time horizon. Many techniques have been proposed, developed, and applied to solve this constrained optimization problem for the mobile robots. With our aproach we try to investigate how is the MPC framework is applicable to trajectory generation for point-to-point problems with a fixed final time and to find a set of assumptions and methods that allow for real-time solutions.


Model predictive control; Real time robot control; Mobile robot control; Constrained optimization problem; Linear quadratic optimal control

Full Text:



Khalil T.R., Levinson D.A., “The use of Kane’s dynamic equations in robotics”, International Journal of Robotic Research, no.2, 1983

López-Nicolás G., Sagüés C., et al., „Switching visual control based on epipoles for mobile robots”, Robotics and Autonomous Systems, Vol. 56, Issue 7, pp. 592-603, doi:10.1016/j.robot.2007.10.005 ISSN 0921-8890, 2008

Moustris G., Tzafestas S.G., (2010), „Switching fuzzy tracking control for mobile robots under curvature constraints”, Control Engineering Practice, Vol. 19, Issue 1, pp. 45-53, doi:10.1016/j.conengprac.2010.08.008, ISSN 0967-0661, 2010

Ouyang P.R., Zhang W.J., Gupta M.M, „An adaptive switching learning control method for trajectory tracking of robot manipulators”, Mechatronics, Volume 16, (1), pp. 51-61, doi:10.1016/j.mechatronics.2005.08.002, ISSN 0957-4158, 2006

Pop N., Vladareanu L., Wang H., Ungureanu M., Migdalovici M., Vladareanu V., Feng Y., Lin M., Mastan EP., Emary I El., “The Walking Robot Equilibrium Recovery Applied on the NAO Robot”, Emerging Technologies for Health and Medicine: Virtual Reality, Augmented Reality, Artificial Intelligence, Internet of Things, Robotics, Industry 4.0, pp. 179-189, John Wiley & Sons, Inc. Hoboken, NJ, USA, 2018

Şandru O., Vlǎdareanu L., Şchiopu P., Vlǎdareanu, V., Şandru A., „Multidimensional Extenics Theory”, 75 (1), pp. 3-12., U.P.B. Sci. Bull., Series A, ISSN 1223-7027, 2013

Vladareanu Victor, Schiopu Paul, Cang Shuang, Yu Hongnyan, Deng Mingcong, „Enhanced Extenics Controller for Real Time Control of Rescue Robot Actuators”, UKACC International Conference On Control (CONTROL), Loughborough, UK, pp. 725-730, 2014

Vladareanu Victor, Deng Mingcong, Schiopu Paul, “Robots Extension Control using Fuzzy Smoothing”, Proceedings of the 2013 International Conference on Advanced Mechatronic Systems, ISBN 978-0-9555293-9-9, pp. 511-516, Luoyang, China,, 2013

Wang Hongbo , Dong Zhang, Hao Lu, Feng Yongfei, Xu Peng, Mihai Razvan Viorel, Vladareanu Luige, „Active Training Research of a Lower Limb Rehabilitation Robot Based on Constrained Trajectory”, Proceedings of the 2015 International Conference on Advanced Mechatronic Systems, Beijing, China, pp. 24-29, , 2015



  • There are currently no refbacks.

Copyright (c) 2019 Nicolae Pop, Luige Vladareanu, Marcel Migdalovici, Adrian I. Pop, Mihai Radulescu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License