Modelling and simulation of a remote controlled mechatronic device

Alexandru Lodin, Daniel Moga, Nicoleta Stroia, Dorin Petreus, Vlad Muresan, Radu Adrian Munteanu, Luige Vladareanu

Abstract


The paper introduces the design, modelling and simulation of an electromechanical actuator device able to produce periodical translation movement. The parameters characterizing this movement (stroke length, force, speed profile) are considered to be remotely programmable via a wireless interface.

Keywords


Electromechanical actuator; Periodical translation movement; Permanent magnet; Hybrid system; Simulation

Full Text:

PDF

References


S. Bartel, Review of selected designs and conception of electromagnetic pulsating blood flow pump and its control system, Elektryka, 1 (237), 105-115, 2016

B. Goldberg, M. Karpelson, O. Ozcan, and R. J. Wood. Planar Fabrication of a Mesoscale Voice Coil Actuator. 2014 IEEE International Conference on Robotics & Automation (ICRA), Hong Kong Convention and Exhibition Center, May 31 - June 7, 2014. Hong Kong, China, 2014

R. Magalotti, A Multiphysics Approach to the Design of Loudspeaker Drivers. Proceedings of the 2015 COMSOL Conference in Grenoble, 2015.

O. J. C. Villamil, Design and analysis of a flat sound generator. MSc Thesis. University of Twente, Department of Electrical Engineering, 2012

F. Malbos, M. Bogdanski and M. Strauss. Prediction of the Loudspeaker Total Harmonics Distortion Using Comsol Multiphysics. Proceedings of the 2016 COMSOL Conference in Munich, 2016

J. E. Lane, R. C. Youngquist, C. D. Immer and J. C. Simpson. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid. Technical Report. NASA/TM-2013-217918. http://www.sti.nasa.gov, 2001

F. A. Hrebenciuc, D. Moga, D. Petreus, Z. Barabas and R. Moga, Combined Analytical and Numerical Approach to Study Coil Arrays for Contactless Charging of Batteries in Active Transponders, Electronics and Electrical Engineering, vol. 123, no. 7, 2012, pp. 37-42, ISSN 1392–1215, DOI:10.5755/j01.eee.123.7.2372.

N. Derby and S. Olbert. Cylindrical Magnets and Ideal Solenoids. American Journal of Physics. 78, 2009, DOI: 10.1119/1.3256157.

A. Demarchi, L. Farconi, A. Pinto, R. Lang, R. Romero and I. Silva, Modelling a Solenoid's Valve Movement. In: Akiyama H., Obst O., Sammut C., Tonidandel F. (eds) RoboCup 2017: Robot World Cup XXI. RoboCup 2017. Lecture Notes in Computer Science, vol 11175. Springer, 2017. DOI: 10.1007/978-3-030-00308-1_24

Kaiwen Yuan. A 3D printing and moulding method for the fabrication of a miniature voice coil motor actuator. MSc Thesis. The University of British Columbia, 2015

Xiangyang Xu, Xiao Han, Yanfang Liu, Yanjing Liu and Yang Liu. “Modeling and Dynamic Analysis on the Direct Operating Solenoid Valve for Improving the Performance of the Shifting Control System”. Appl. Sci. 2017, 7, 1266; DOI:10.3390/app7121266

R. Andersson. Loudspeaker voice-coil temperature estimation. Master's Thesis. Electrical Engineering. Lulea University of Technology, 2008




DOI: http://dx.doi.org/10.21533/pen.v7i1.372

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Alexandru Lodin, Daniel Moga, Nicoleta Stroia, Dorin Petreus, Vlad Muresan, Radu Adrian Munteanu, Luige Vladareanu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License