News on modeling of walking robot critical positions

Marcel Migdalovici, Luige Vladareanu, Nicilae Pop, Victor Vladareanu, Alexandru Vladeanu, Daniela Baran, Gabriela Vladeanu


The principal objective of our study is to emphasize the strategies for the walking robot mathematical model to traverse an uneven terrain, respecting the hypothesis of environment model defined by us. The multiple aspects on axiomatic systems, with possible application to environment’s mathematical model axiomatization, open an interesting new way of research and is exposed in the first part of the paper. Our study on the walking robot begins with formulation of improved mathematical model for physical identification derived from geometrical identification of critical position in particular case of waking robot leg. The physical identification of the critical position is analyzed in the paper on our concrete case of walking robot leg mathematical model. The specialized algorithm performed by us is used for verification of the theory. The new directions of research, opened by our analyses in this area, are described.


environment’s model axiom; walking robot; kinematics / dynamic model; stability regions; axiomatic system

Full Text:



Dinca F. Zaharia E. Baran D. An analysis of chaotic evolutions of dynamic systems, Revue Roumaine des science techniques, 49, pp. 75-90, (2004).

Feng Yongfei, Wang Hongbo, Lu Tingting, Vladareanu Victor, Li Qi, Zhao Chaosheng.(2016), Teaching Training Method of a Lower Limb Rehabilitation Robot, International Journal of Advanced Robotic Systems, 13(57): 1-11.

Francis J.G.F. QR transformation, The Computer Journal, 4, First part, pp. 265–271, (1961), Second part, pp. 332–345, (1962), 10.1093/comjnl/4.4.332.

Grim P. The Incomplete Universe: Totality, Knowledge, and Truth, The MIT Press. (1991).

Stuart J.R. and Peter N. Artificial Intelligence: A modern Approach, Pearson Education Limited, England, (2016).

Guckenheimer J. Holmes P. Nonlinear Oscillation Dynamical Systems and Bifurcation of Vector Fields, Springer Verlag, Berlin, Heidelberg, Tokyo, (1984).

Hayashi, C. Nonlinear Oscillations in Physical Systems, Ed. McGraw - Hill Book Company, New York, San Francisco, Toronto, London, (1964).

Halanay A. and Rasvan V. Applications of Liapunov Methods in Stability, Kluwer Academic Publishers, Dordrecht, Boston, London, (1993).

Hirsch M.W. Smale S. Devaney R.L. Differential equations dynamical systems, and an introduction to chaos, Academic Press, (2004).

Migdalovici M., Sireteanu T, and Videa E.M., (2010), Control of Vibration of Transmission Lines, International Journal of Acoustics and Vibration, 15(2), pp. 65-71.

Migdalovici M. Vladareanu L. Baran D. Vladeanu G. Radulescu M., (2015), Stability Analysis of Walking Robot Motion, Procedia Computer Science 65:233–240 doi:10.1016/j.procs.2015.09.117.

Parlet B.N. Global convergence of the basic QR algorithm on Hessenberg matrices, Math. of Computation, 22, pp: 803—817, (1968), DOI: 10.2307/2004579.

Pearl J. Causality: Models, Reasoning, and Inferences, Cambridge University Press. (2009).

Pop N. Vladareanu L. Popescu I.N. Ghiţă C. Gal I.A. Cang S. Yu H. Bratu V. Deng M. “A numerical dynamic behaviour model for 3D contact problems with friction”, Computational Materials Science, Volume 94, November 2014, pp. 285-291, (2014).

Staretu I. and Jitariu S. (2015), "Reconfigurable Anthropomorphic Gripper with Three Fingers: Synthesis, Analysis, and Simulation", Applied Mechanics and Materials, Vol. 762, pp. 75-82.

Vladareanu L. Io I. Velea L.M. Mitroi D. & Gal A. “The Real Time Control of Modular Walking Robot Stability”, Proceedings of the 8th International Conference on Applications of Electrical Engineering (AEE’09), Houston, USA (pp. 179-186).

Vladareanu V. Munteanu R.I. Mumtaz A. Smarandache F. and Vladareanu L. The optimization of intelligent control interfaces using Versatile Intelligent Portable Robot Platform, Procedia Computer Science 65: 225 – 232 doi:10.1016 /j.procs.2015.09.115.

Vladareanu V. Tont G. Vladareanu L. Smarandache F. The Navigation of Mobile Robots in Non–Stationary and Non–Structured Environments, Int. J. Advanced Mechatronic Sys., 5, 4, 2013, 232–243.

Voinea R. Stroe I. Introduction in the Theory of Dynamical Systems (In Romanian) , Romanian Academy Printing House, Bucharest, Romania, (2000).

Wilkinson J. H. Convergence of the LR, QR and related algorithms, Computer J. 8, 77-84, (1965).

Wang Hongbo , Dong Zhang, Hao Lu, Feng Yongfei, Xu Peng, Mihai Razvan Viorel, Vladareanu Luige, (2015), Active Training Research of a Lower Limb Rehabilitation Robot Based on Constrained Trajectory, Proceedings of the 2015 Int. Conf. on Advanced Mechatronic Systems, Beijing, China, August, 24-29,



  • There are currently no refbacks.

Copyright (c) 2019 Marcel Migdalovici, Luige Vladareanu, Nicilae Pop, Victor Vladareanu, Alexandru Vladeanu, Daniela Baran, Gabriela Vladeanu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License