A model of particles movement on a discrete contour
Abstract
0, or N is odd and s=0. We have proved that the process can be non-reversible if M ≥ 3, s=0.
Keywords
Full Text:
PDFReferences
[1] Belyaev Yu.K. About simplified model of movement without overtaking. Izvestiya AN SSSR. Tekhnicheskaya kibernetika, 1972, no. 5, pp. 100 – 103. (In Russian.)
Zele U. Generalization of model of movement without overtaking. Izvestiya AN SSSR. Tekhnicheskaya kibernetika, 1972, no. 5, pp. 100 – 103. (In Russian.)
Schadschneider A., Schreckenberg M. Car-oriental mean-field theory for traffic theory. 1996. arXiv:cond-mat/9612113v1
Gray L., Griffeath D. The ergodic theory of traffic jams. J. Stat. Phys., 2001, vol. 105, no's 3/4, pp. 413–452.
Kanai M., Nishinari K., Tokihiro T. Exact solution and asymptotic behaviour of the asymmetric simple exclusion process on a ring. 18 May 2009. arXiv.0905.2795v1 [cond-mat-stat-mech]
Buslaev A.P., Tatashev A.G. Particles flow on the regular polygon. Journal of Concrete and Applicable Mathematics, 2011, vol. 9, no. 4, pp. 290 – 303.
Kozlov V.V., Buslaev A.P., Tatashev A.G. Monotonic random walks and clusters flows on networks. Models and applications, Lambert Academician Publishing, Saarbrucken, Germany, 2013, no. 78724.
Blank M. Metric properties of discrete time exclusion type processes in continuum. J. Stat. Phys. 2010, vol. 140, pp. 170 – 197.
Blank M. Stochastic stability of traffic maps. arXiv:1210.2236v1 [math.DS] 8 Oct 2012
Buslaev A.P., Prikhodko V.M., Tatashev A.G., Yashina M.V. The deterministic-stochastic flow model, 2005. arXiv:physics/0504139[physics.sos-ph], pp. 1 – 21.
Kozlov V.V., Buslaev A.P., Tatashev A.G. On synergy of totally connected flow on chainmails (CMSSE-2013, Cadiz, Spain ), vol. 3, pp. 861 – 873.
Buslaev A.P., Tatashev A.G., Yashina M.V. Qualitative properties of dynamical system on toroidal chainmail. 11th International Conference of Numerical Analysis Mathematics 2013 (ICNAAM 2013, Rhodes, Greece, 21 – 27 September 2013. AIP Conference Proceedings 1558, pp. 1144 – 1147 (2013).
Kemeny J.G., Snell J.L., Finite Markov chains. — The University Series in Undergraduate Mathematics. — Princeton: Van Nostrand, 1960.
DOI: http://dx.doi.org/10.21533/pen.v7i1.369
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Alexander Tatashev, Marina Yashina

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2303-4521
Digital Object Identifier DOI: 10.21533/pen
This work is licensed under a Creative Commons Attribution 4.0 International License