Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
Abstract
Full Text:
PDFReferences
M. S. Al-Sarawi and S. Abed, “Improving energy efficiency in smart homes with deep convolutional neural networks for accurate load prediction,” IEEE Access, vol. 8, pp. 7077–7090, 2020, doi: 10.1109/ACCESS.2020.2967892.
J.-H. Kim and K.-Y. Lee, “A deep learning approach to energy consumption prediction in smart homes using convolutional neural networks,” IEEE Access, vol. 8, pp. 466–475, 2020, doi: 10.1109/ACCESS.2019.2937117.
Y.-C., Hsu et al., “A deep learning approach for energy consumption prediction in smart homes using convolutional neural networks and long short-term memory models” IEEE Access , 2020, vol 8 , pp 51451 - 51460 , 2020 , doi : 10 . 1109 / ACCESS .
X . Li et al., “Energy consumption forecasting of residential buildings based on a hybrid deep learning model with convolutional neural network and long short-term memory” Applied Energy , 2019, vol 257 , pp 114076 - 114087 , 2019 , doi : 10 . 1016 / j . apenergy.
A.-H., Al-Dulaimi et al., “Deep learning based load forecasting for smart home energy management systems using convolutional neural network and long short-term memory models” Applied Energy , 2019, vol 257 , pp 113927 - 113941 , 2019 , doi : 10 . 1016 / j .
F. Roessler, T. Teich, and S. Franke, “Neural Networks for Smart Homes and Energy Efficiency,” DAAAM INTERNATIONAL SCIENTIFIC BOOK 2012, 2012, doi: 10.2507/daaam.scibook.2012.26.
J.-Y., Chen et al., “A novel hybrid model combining convolutional neural network and long short-term memory for electricity load forecasting” Applied Energy , vol 260 , pp 114348 - 114358 2020 doi : 10 1016 / j apenergy 2020 114348.
L.-Y., Wang et al., “Electricity load forecasting based on a hybrid model combining convolutional neural network and long short-term memory” Energies 13 (10) 3118 (2020) https://doi:10/gfhvwzs.
Z.-X., Zhang et al., “A novel hybrid model combining convolutional neural network and long short-term memory for electricity load forecasting in residential buildings” Applied Energy 263 (2020) 1145
S. A. Sahy, S. H. Mahdi, H. M. Gheni, and I. Al-Barazanchi, “Detection of the patient with COVID-19 relying on ML technology and FAST algorithms to extract the features,” Bull. Electr. Eng. Informatics, vol. 11, no. 5, pp. 2886–2894, 2022, doi: 10.11591/eei.v11i5.4355.
G. M. Faisal, H. A. A. Alshadoodee, H. H. Abbas, H. M. Gheni, and I. Al-Barazanchi, “Integrating security and privacy in mmWave communications,” Bull. Electr. Eng. Informatics, vol. 11, no. 5, pp. 2856–2865, 2022, doi: 10.11591/eei.v11i5.4314.
I. Al-Barazanchi et al., “Remote Monitoring of COVID-19 Patients Using Multisensor Body Area Network Innovative System,” Comput. Intell. Neurosci., vol. 2022, pp. 1–14, Sep. 2022, doi: 10.1155/2022/9879259.
Y. Niu, S. I. Kadhem, I. A. M. Al Sayed, Z. A. Jaaz, H. M. Gheni, and I. Al Barazanchi, “Energy-Saving Analysis of Wireless Body Area Network Based on Structural Analysis,” in 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Jun. 2022, pp. 1–6, doi: 10.1109/HORA55278.2022.9799972.
I. Al Barazanchi et al., “Blockchain: The Next Direction of Digital Payment in Drug Purchase,” in 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Jun. 2022, pp. 1–7, doi: 10.1109/HORA55278.2022.9799993.
H. Shaker Mehdy, N. Jabbar Qasim, H. Hadi Abbas, I. Al_Barazanchi, and H. Muwafaq Gheni, “Efficient time-series forecasting of nuclear reactions using swarm intelligence algorithms,” Int. J. Electr. Comput. Eng., vol. 12, no. 5, p. 5093, Oct. 2022, doi: 10.11591/ijece.v12i5.pp5093-5103.
S. A. Shawkat and I. Al-Barazanchi, “A proposed model for text and image encryption using different techniques,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 20, no. 4, p. 858, Aug. 2022, doi: 10.12928/telkomnika.v20i4.23367.
S. S. Oleiwi, G. N. Mohammed, and I. Al-Barazanchi, “Mitigation of packet loss with end-to-end delay in wireless body area network applications,” Int. J. Electr. Comput. Eng., vol. 12, no. 1, pp. 460–470, 2022, doi: 10.11591/ijece.v12i1.pp460-470.
H. R. Abdulshaheed, Z. T. Yaseen, A. M. Salman, and I. Al-Barazanchi, “A survey on the use of WiMAX and Wi-Fi on Vehicular Ad-Hoc Networks (VANETs),” IOP Conf. Ser. Mater. Sci. Eng., vol. 870, no. 1, 2020, doi: 10.1088/1757-899X/870/1/012122.
Z. A. Jaaz, I. Y. Khudhair, H. S. Mehdy, and I. Al Barazanchi, “Imparting Full-Duplex Wireless Cellular Communication in 5G Network Using Apache Spark Engine,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2021-Octob, no. October, pp. 123–129, 2021, doi: 10.23919/EECSI53397.2021.9624283.
I. Al_barazanchi, Z. A. Jaaz, H. H. Abbas, and H. R. Abdulshaheed, “Practical application of iot and its implications on the existing software,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2020-Octob, no. October, pp. 10–14, 2020, doi: 10.23919/EECSI50503.2020.9251302.
A. A. AlRababah, “Data Flows Management and Control in Computer Networks,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 11, 2018, doi: 10.14569/IJACSA.2018.091130.
L. Barik, A. AbdulQadir, and Y. Difulah, “Enhancing Educational Data Mining based ICT Competency among e-Learning Tutors using Statistical Classifier,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 3, 2020, doi: 10.14569/IJACSA.2020.0110371.
A. A. AlRababah and B. A. Alghamdi, “Information Protection Method in Distributed Computer Networks Based on Routing Algorithms,” Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 2, pp. 66–73, 2019.
A. Moustafa, A. Al-Marghirani, M. M. Al-Shomrani, and A. A. Al-Rababah, “A New Dynamic Model for Software Testing Quality,” Res. J. Appl. Sci. Eng. Technol., vol. 7, no. 1, pp. 191–197, Jan. 2014, doi: 10.19026/rjaset.7.239.
H. Tao et al., “A Newly Developed Integrative Bio-Inspired Artificial Intelligence Model for Wind Speed Prediction,” IEEE Access, vol. 8, pp. 83347–83358, 2020, doi: 10.1109/ACCESS.2020.2990439.
S. Q. Salih et al., “Integrative stochastic model standardization with genetic algorithm for rainfall pattern forecasting in tropical and semi-arid environments,” Hydrol. Sci. J., vol. 65, no. 7, pp. 1145–1157, May 2020, doi: 10.1080/02626667.2020.1734813.
A. Malik et al., “The implementation of a hybrid model for hilly sub-watershed prioritization using morphometric variables: Case study in India,” Water (Switzerland), vol. 11, no. 6, 2019, doi: 10.3390/w11061138.
M. H. Ali, A. Ibrahim, H. Wahbah, and I. Al_Barazanchi, “Survey on encode biometric data for transmission in wireless communication networks,” Period. Eng. Nat. Sci., vol. 9, no. 4, pp. 1038–1055, 2021, doi: 10.21533/pen.v9i4.2570.
U. Beyaztas, S. Q. Salih, K. W. Chau, N. Al-Ansari, and Z. M. Yaseen, “Construction of functional data analysis modeling strategy for global solar radiation prediction: application of cross-station paradigm,” Eng. Appl. Comput. Fluid Mech., vol. 13, no. 1, pp. 1165–1181, 2019, doi: 10.1080/19942060.2019.1676314.
H. Tao et al., “A Newly Developed Integrative Bio-Inspired Artificial Intelligence Model for Wind Speed Prediction,” IEEE Access, vol. 8, pp. 83347–83358, 2020, doi: 10.1109/ACCESS.2020.2990439.
A. A. Al-rababah and M. A. Al-rababah, “Functional Activity Based Comparison Study for Neural Network Application,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 7, no. 1, pp. 153–158, 2007.
T. Hai et al., “DependData: Data collection dependability through three-layer decision-making in BSNs for healthcare monitoring,” Inf. Fusion, vol. 62, pp. 32–46, Oct. 2020, doi: 10.1016/j.inffus.2020.03.004.
S. Q. Salih, M. Habib, I. Aljarah, H. Faris, and Z. M. Yaseen, “An evolutionary optimized artificial intelligence model for modeling scouring depth of submerged weir,” Eng. Appl. Artif. Intell., vol. 96, p. 104012, Nov. 2020, doi: 10.1016/j.engappai.2020.104012
S. A. M. Al-Juboori, F. Hazzaa, S. Salih, Z. S. Jabbar, and H. M. Gheni, “Man-in-the-middle and denial of service attacks detection using machine learning algorithms,” Bull. Electr. Eng. Informatics, vol. 12, no. 1, pp. 418–426, Feb. 2023, doi: 10.11591/eei.v12i1.4555.
I. Al Barazanchi, A. Murthy, A. Abdulqadir, A. Rababah, and G. Khader, “Blockchain Technology - Based Solutions for IOT Security,” Iraqi J. Comput. Sci. Math., vol. 3, no. 1, pp. 1–12, 2022.
Z. A. Jaaz, M. E. Rusli, N. A. Rahmat, I. Y. Khudhair, I. Al Barazanchi, and H. S. Mehdy, “A Review on Energy-Efficient Smart Home Load Forecasting Techniques,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2021-Octob, no. October, pp. 233–240, 2021, doi: 10.23919/EECSI53397.2021.9624274.
A. S. Shibghatullah and I. Al Barazanchi, “An Analysis of the Requirements for Efficient Protocols in WBAN,” J. Telecommun. Electron. Comput. Eng., vol. 6, no. 2, pp. 19–22, 2014
DOI: http://dx.doi.org/10.21533/pen.v11i3.3606
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Suaad M. Saber, Geehan Sabah Hassan, Mohanad Sameer Jabbar, Jamal Fadhil Tawfeq, Ahmed Dheyaa Radhi, Poh Soon JosephNg

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2303-4521
Digital Object Identifier DOI: 10.21533/pen
This work is licensed under a Creative Commons Attribution 4.0 International License