Exploring the potential of offline cryptography techniques for securing ECG signals in healthcare

Azmi Shawkat Abdulbaqi, Hussein Ali Hussein Al Naffakh, Sura Abdulmunem Mohammed Al-Juboori, Ahmed Dheyaa Radhi, Jamal Fadhil Tawfeq, Poh Soon JosephNg

Abstract


In the research, a software for ECG signal based on Chaos encryption based on C#-programmed and Kit of Microsoft Visual Studio Development was implemented. A chaos logic map (ChLMp ) and its initial value are utilized to create Level-1 ECG signal based on Chaos encryption bit streams. A ChLMp, an initial value, a ChLMp bifurcation parameter, and two encryption level parameters are utilized to create level-2 ECG signal based on Chaos encryption bit streams. The level-3 ECG signal based on Chaos encryption software utilizes two parameters for the level of encryption, a permutation mechanism, an initial value, a bifurcation parameter of the level of encryption, and a ChLMp. We assess 16-channel ECG signals with great resolution utilizing encryption software. The level-3 ECG signal based on Chaos encryption program has the slowest and most reliable encryption speed. The encryption effect is superior, according to test findings, and when the right decoding parameter is utilized, the ECG signals may be completely recovered. The high resolution 16-channel ECG signals (HRMCECG) won't be recovered if an invalid input parameter occurred, such as a 0.00001% initial point error, which will result in chaotic encryption bit streams.

Full Text:

PDF

References


I. Al-Barazanchi et al., “Remote Monitoring of COVID-19 Patients Using Multisensor Body Area Network Innovative System,” Comput. Intell. Neurosci., vol. 2022, pp. 1–14, Sep. 2022, doi: 10.1155/2022/9879259.

G. Nguyen et al., “Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey,” Artif. Intell. Rev., vol. 52, no. 1, pp. 77–124, 2019, doi: 10.1007/s10462-018-09679-z.

C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0197-0.

R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep Learning Approach for Intelligent Intrusion Detection System,” IEEE Access, vol. 7, pp. 41525–41550, 2019, doi: 10.1109/ACCESS.2019.2895334.

K. Sivaraman, R. M. V. Krishnan, B. Sundarraj, and S. Sri Gowthem, “Network failure detection and diagnosis by analyzing syslog and SNS data: Applying big data analysis to network operations,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9 Special Issue 3, pp. 883–887, 2019, doi: 10.35940/ijitee.I3187.0789S319.

A. D. Dwivedi, G. Srivastava, S. Dhar, and R. Singh, “A decentralized privacy-preserving healthcare blockchain for IoT,” Sensors (Switzerland), vol. 19, no. 2, pp. 1–17, 2019, doi: 10.3390/s19020326.

F. Al-Turjman, H. Zahmatkesh, and L. Mostarda, “Quantifying uncertainty in internet of medical things and big-data services using intelligence and deep learning,” IEEE Access, vol. 7, pp. 115749–115759, 2019, doi: 10.1109/ACCESS.2019.2931637.

S. Kumar and M. Singh, “Big data analytics for healthcare industry: Impact, applications, and tools,” Big Data Min. Anal., vol. 2, no. 1, pp. 48–57, 2019, doi: 10.26599/BDMA.2018.9020031.

L. M. Ang, K. P. Seng, G. K. Ijemaru, and A. M. Zungeru, “Deployment of IoV for Smart Cities: Applications, Architecture, and Challenges,” IEEE Access, vol. 7, pp. 6473–6492, 2019, doi: 10.1109/ACCESS.2018.2887076.

B. P. L. Lau et al., “A survey of data fusion in smart city applications,” Inf. Fusion, vol. 52, no. January, pp. 357–374, 2019, doi: 10.1016/j.inffus.2019.05.004.

Y. Wu et al., “Large scale incremental learning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 374–382, 2019, doi: 10.1109/CVPR.2019.00046.

A. Mosavi, S. Shamshirband, E. Salwana, K. wing Chau, and J. H. M. Tah, “Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning,” Eng. Appl. Comput. Fluid Mech., vol. 13, no. 1, pp. 482–492, 2019, doi: 10.1080/19942060.2019.1613448.

V. Palanisamy and R. Thirunavukarasu, “Implications of big data analytics in developing healthcare frameworks – A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 31, no. 4, pp. 415–425, 2019, doi: 10.1016/j.jksuci.2017.12.007.

J. Sadowski, “When data is capital: Datafication, accumulation, and extraction,” Big Data Soc., vol. 6, no. 1, pp. 1–12, 2019, doi: 10.1177/2053951718820549.

J. R. Saura, B. R. Herraez, and A. Reyes-Menendez, “Comparing a traditional approach for financial brand communication analysis with a big data analytics technique,” IEEE Access, vol. 7, pp. 37100–37108, 2019, doi: 10.1109/ACCESS.2019.2905301.

D. Nallaperuma et al., “Online Incremental Machine Learning Platform for Big Data-Driven Smart Traffic Management,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4679–4690, 2019, doi: 10.1109/TITS.2019.2924883.

S. Schulz, M. Becker, M. R. Groseclose, S. Schadt, and C. Hopf, “Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development,” Curr. Opin. Biotechnol., vol. 55, pp. 51–59, 2019, doi: 10.1016/j.copbio.2018.08.003.

C. Shang and F. You, “Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era,” Engineering, vol. 5, no. 6, pp. 1010–1016, 2019, doi: 10.1016/j.eng.2019.01.019.

Y. Yu, M. Li, L. Liu, Y. Li, and J. Wang, “Clinical big data and deep learning: Applications, challenges, and future outlooks,” Big Data Min. Anal., vol. 2, no. 4, pp. 288–305, 2019, doi: 10.26599/BDMA.2019.9020007.

M. Huang, W. Liu, T. Wang, H. Song, X. Li, and A.Liu,"A queuing delay utilization scheme for on-path service aggregation in services-oriented computing networks," IEEE Access , vol .7 , pp .23816-23833 ,2019 ,doi :10 .1109/ACCESS .2019 .2899402.

G.Xu,Y.Shi,X.Sun,andW.Shen,"Internetofthingsinmarineenvironmentmonitoring:A review," Sensors (Switzerland), vol .19 ,no .7 ,pp .1-21 ,2019 ,doi :10 .3390/s19071711

M. Aqib, R. Mehmood, A. Alzahrani, I. Katib, A. Albeshri, and S. M. Altowaijri, "Smarter traffic prediction using big data, in-memory computing, deep learning and gpus," vol. 19, no. 9, 2019. DOI: 10.1109/MIS.2019.2947728.

S. Leonelli and N. Tempini, "Data Journeys in the Sciences," 2020. DOI: 10.7551/mitpr




DOI: http://dx.doi.org/10.21533/pen.v11i3.3604

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Azmi Shawkat Abdulbaqi, Hussein Ali Hussein Al Naffakh, Ahmed Dheyaa Radhi, Jamal Fadhil Tawfeq, Poh Soon JosephNg

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License