A novel nomadic people optimizer-based energy-efficient routing for WBAN

Adnan Yousif Dawod, Baqer A Hakim, Ahmed Dheyaa Radhi, Zinah S. Jabbar, Jamal Fadhil Tawfeq, Poh Soon JosephNg


In response to user demand for wearable devices, several WBAN deployments now call for effective communication processes for remote data monitoring in real time. Using sensor networks, intelligent wearable devices have exchanged data that has benefited in the evaluation of possible security hazards. If smart wearables in sensor networks use an excessive amount of power during data transmission, both network lifetime and data transmission performance may suffer. Despite the network's effective data transmission, smart wearable patches include data that has been combined from several sources utilizing common aggregators. Data analysis requires careful network lifespan control throughout the aggregation phase. By using the Nomadic People Optimizer-based Energy-Efficient Routing (NPO-EER) approach, which effectively allows smart wearable patches by minimizing data aggregation time and eliminating routing loops, the network lifetime has been preserved in this research. The obtained findings showed that the NPO method had a great solution. Estimated Aggregation time, Energy consumption, Delay, and throughput have all been shown to be accurate indicators of the system's performance.

Full Text:



T. O. Barayyan, A. Kaur, and S. Shilpa, “A MULTISINK ENERGY-EFFICIENT ROUTING PROTOCOL FOR WIRELESS BODY AREA NETWORK,” Yanbu Journal of Engineering and Science, vol. 13, no. 1, May 2021, doi: 10.53370/001c.24323.

W.-K. Yun and S.-J. Yoo, “Q-Learning-Based Data-Aggregation-Aware Energy-Efficient Routing Protocol for Wireless Sensor Networks,” IEEE Access, vol. 9, pp. 10737–10750, 2021, doi: 10.1109/access.2021.3051360.

Q. Ding, R. Zhu, H. Liu, and M. Ma, “An Overview of Machine Learning-Based Energy-Efficient Routing Algorithms in Wireless Sensor Networks,” Electronics, vol. 10, no. 13, p. 1539, Jun. 2021, doi: 10.3390/electronics10131539.

M. H. Ali, A. Ibrahim, H. Wahbah, and I. Al_Barazanchi, “Survey on encode biometric data for transmission in wireless communication networks,” Period. Eng. Nat. Sci., vol. 9, no. 4, pp. 1038–1055, 2021, doi: 10.21533/pen.v9i4.2570.

A. Attir, “Cryptanalysis of an Anonymous Mutual Authentication Protocol for Wireless Body Area Network,” Proceedings of the 11th International Conference on Sensor Networks, 2022, doi: 10.5220/0010829000003118.

R. A. Khan, Q. Xin, and N. Roshan, “RK-Energy Efficient Routing Protocol for Wireless Body Area Sensor Networks,” Wireless Personal Communications, vol. 116, no. 1, pp. 709–721, Aug. 2020, doi: 10.1007/s11277-020-07734-z.

I. Al-Barazanchi, H. R. Abdulshaheed, and M. S. Binti Sidek, “A survey: Issues and challenges of communication technologies in WBAN,” Sustainable Engineering and Innovation, vol. 1, no. 2, pp. 84–97, Dec. 2019, doi: 10.37868/sei.v1i2.85.

F. Ullah, M. Z. Khan, G. Mehmood, M. S. Qureshi, and M. Fayaz, “Energy Efficiency and Reliability Considerations in Wireless Body Area Networks: A Survey,” Computational and Mathematical Methods in Medicine, vol. 2022, pp. 1–15, Jan. 2022, doi: 10.1155/2022/1090131.

N. Ahmad, B. Shahzad, M. Arif, D. Izdrui, I. Ungurean, and O. Geman, “An Energy-Efficient Framework for WBAN in Health Care Domain,” Journal of Sensors, vol. 2022, pp. 1–11, Feb. 2022, doi: 10.1155/2022/5823461.

A. Malik et al., “Pan Evaporation Estimation in Uttarakhand and Uttar Pradesh States, India: Validity of an Integrative Data Intelligence Model,” Atmosphere (Basel)., vol. 11, no. 6, p. 553, May 2020, doi: 10.3390/atmos11060553.

H. Tao, S. M. Awadh, S. Q. Salih, S. S. Shafik, and Z. M. Yaseen, “Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction,” Neural Comput. Appl., 2022, doi: 10.1007/s00521-021-06362-3

A. Malik, A. Kumar, O. Kisi, N. Khan, S. Q. Salih, and Z. M. Yaseen, “Analysis of dry and wet climate characteristics at Uttarakhand (India) using effective drought index,” Nat. Hazards, 2021, doi: 10.1007/s11069-020-04370-5.

H. Tao et al., “Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting,” Complexity, vol. 2020, pp. 1–22, Oct. 2020, doi: 10.1155/2020/8844367.

B. Karimi, P. Mohammadi, H. Sanikhani, S. Q. Salih, and Z. M. Yaseen, “Modeling wetted areas of moisture bulb for drip irrigation systems: An enhanced empirical model and artificial neural network,” Comput. Electron. Agric., 2020, doi: 10.1016/j.compag.2020.105767.

Y. K. Salih, O. H. See, S. Yussof, A. Iqbal, and S. Q. Mohammad Salih, “A proactive fuzzy-guided link labeling algorithm based on MIH framework in heterogeneous wireless networks,” Wirel. Pers. Commun., vol. 75, no. 4, pp. 2495–2511, 2014, doi: 10.1007/s11277-013-1479-z.

F. Ullah, M. Zahid Khan, M. Faisal, H. U. Rehman, S. Abbas, and F. S. Mubarek, “An Energy Efficient and Reliable Routing Scheme to enhance the stability period in Wireless Body Area Networks,” Computer Communications, vol. 165, pp. 20–32, Jan. 2021, doi: 10.1016/j.comcom.2020.10.017.

A. Malik et al., “The implementation of a hybrid model for hilly sub-watershed prioritization using morphometric variables: Case study in India,” Water (Switzerland), vol. 11, no. 6, 2019, doi: 10.3390/w11061138.

H. Tao et al., “A Newly Developed Integrative Bio-Inspired Artificial Intelligence Model for Wind Speed Prediction,” IEEE Access, vol. 8, pp. 83347–83358, 2020, doi: 10.1109/ACCESS.2020.2990439.

Y. B. David, T. Geller, I. Bistritz, I. Ben-Gal, N. Bambos, and E. Khmelnitsky, “Wireless Body Area Network Control Policies for Energy-Efficient Health Monitoring,” Sensors, vol. 21, no. 12, p. 4245, Jun. 2021, doi: 10.3390/s21124245.

Y. K. Salih, O. H. See, S. Yussof, A. Iqbal, and S. Q. Mohammad Salih, “A proactive fuzzy-guided link labeling algorithm based on MIH framework in heterogeneous wireless networks,” Wirel. Pers. Commun., vol. 75, no. 4, pp. 2495–2511, 2014, doi: 10.1007/s11277-013-1479-z.

S. Memon et al., “Temperature and Reliability-Aware Routing Protocol for Wireless Body Area Networks,” IEEE Access, vol. 9, pp. 140413–140423, 2021, doi: 10.1109/access.2021.3117928.

A. M. Ali, M. A. Ngadi, R. Sham, and I. I. Al Barazanchi, “Enhanced QoS Routing Protocol for an Unmanned Ground Vehicle, Based on the ACO Approach,” Sensors (Basel)., vol. 23, no. 3, 2023, doi: 10.3390/s23031431.

A. Sundar Raj and M. Chinnadurai, “Energy efficient routing algorithm in wireless body area networks for smart wearable

patches,” Computer Communications, vol. 153, pp. 85–94, Mar. 2020, doi: 10.1016/j.comcom.2020.01.069.

S. Q. Salih and A. R. A. Alsewari, “A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer,” Neural Comput. Appl., vol. 32, no. 14, pp. 10359–10386, 2020, doi: 10.1007/s00521-019-04575-1.

N. Bilandi, H. Verma, and R. Dhir, “An Energy Efficient Health Monitoring System using Relay Node in Wireless Body Area Networks,” EAI Endorsed Transactions on Pervasive Health and Technology, vol. 5, no. 20, p. 164098, May 2020, doi: 10.4108/eai.13-7-2018.164098.

I. Al-Barazanchi et al., “Remote Monitoring of COVID-19 Patients Using Multisensor Body Area Network Innovative System,” Comput. Intell. Neurosci., vol. 2022, pp. 1–14, Sep. 2022, doi: 10.1155/2022/9879259.

F. Cui, S. Q. Salih, B. Choubin, S. K. Bhagat, P. Samui, and Z. M. Yaseen, “Newly explored machine learning model for river flow time series forecasting at Mary River, Australia,” Environ. Monit. Assess., 2020, doi: 10.1007/s10661-020-08724-1.

T. Hai et al., “DependData: Data collection dependability through three-layer decision-making in BSNs for healthcare monitoring,” Inf. Fusion, vol. 62, pp. 32–46, Oct. 2020, doi: 10.1016/j.inffus.2020.03.004.

S. Q. Salih, M. Habib, I. Aljarah, H. Faris, and Z. M. Yaseen, “An evolutionary optimized artificial intelligence model for modeling scouring depth of submerged weir,” Eng. Appl. Artif. Intell., vol. 96, p. 104012, Nov. 2020, doi: 10.1016/j.engappai.2020.104012

S. A. M. Al-Juboori, F. Hazzaa, S. Salih, Z. S. Jabbar, and H. M. Gheni, “Man-in-the-middle and denial of service attacks detection using machine learning algorithms,” Bull. Electr. Eng. Informatics, vol. 12, no. 1, pp. 418–426, Feb. 2023, doi: 10.11591/eei.v12i1.4555.

Z. A. Jaaz, M. E. Rusli, N. A. Rahmat, I. Y. Khudhair, I. Al Barazanchi, and H. S. Mehdy, “A Review on Energy-Efficient Smart Home Load Forecasting Techniques,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2021-Octob, no. October, pp. 233–240, 2021, doi: 10.23919/EECSI53397.2021.9624274.

S. A. Shawkat‎‎ and I. Al-Barazanchi, “A proposed model for text and image encryption using different ‎techniques,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 20, no. 4, p. 858, Aug. 2022, doi: 10.12928/telkomnika.v20i4.23367.

Y. Niu, S. I. Kadhem, I. A. M. Al Sayed, Z. A. Jaaz, H. M. Gheni, and I. Al Barazanchi, “Energy-Saving Analysis of Wireless Body Area Network Based on Structural Analysis,” in 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Jun. 2022, pp. 1–6, doi: 10.1109/HORA55278.2022.9799972.

I. Al Barazanchi, W. Hashim, A. A. Alkahtani, H. H. Abbas, and H. R. Abdulshaheed, “Overview of WBAN from Literature Survey to Application Implementation,” 2021 8th Int. Conf. Electr. Eng. Comput. Sci. Informatics, no. October, pp. 16–21, 2021, doi: 10.23919/eecsi53397.2021.9624301.

A. A. AlRababah, “Neural Networks Precision in Technical Vision Systems,” Int. J. Comput. Sci. Netw. Secur., vol. 20, no. 3, pp. 29–36, 2020.

A. A. Alrababah, A. Alshahrani, and B. Al-Kasasbeh, “Efficiency Model of Information Systems as an Implementation of Key Performance Indicators,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 16, no. 12, pp. 139–143, 2016, [Online]. Available: http://paper.ijcsns.org/07_book/201612/20161219.pdf.

A. A. Q. AlRababah, “Watermarking implementation on digital images and electronic signatures,” Int. J. Adv. Appl. Sci., vol. 4, no. 10, pp. 160–164, Oct. 2017, doi: 10.21833/ijaas.2017.010.022.

A. AbdulQadir, “Lempel - Ziv Implementation for a Compression System Model with Sliding Window Buffer,” Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 10, pp. 101–104, 2015, doi: 10.14569/ijacsa.2015.061014.

A. A. Al-Rababa and M. A. Al-Rababah, “Module Management Tool in Software Development Organizations,” J. Comput. Sci., vol. 3, no. 5, pp. 318–322, May 2007, doi: 10.3844/jcssp.2007.318.322.

DOI: http://dx.doi.org/10.21533/pen.v11i3.3580


  • There are currently no refbacks.

Copyright (c) 2023 Adnan Yousif Dawod, Baqer A Hakim, Ahmed Dheyaa Radhi, Zinah S. Jabbar, Jamal Fadhil Tawfeq, Poh Soon JosephNg

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License