Analysis of a piezoelectric energy harvester system from footsteps of passersby

Camilo Leonardo Sandoval Rodriguez, Carlos Andres Angulo Julio, Arly Dario Rincón Quintero, Omar Lengerke, Nilson Yulian Castillo Leon

Abstract


Piezoelectric materials can be used in applications designed to handle a wide range of input frequencies and forces to enable energy harvesting. Although several studies have been carried out on piezoelectric energy harvesting systems, this application is still under development. The purpose of this work is to analyze the behavior and the ability to generate electrical energy through the elements in piezoelectric tiles or platforms, specifically, piezoelectric disc elements with a diameter of 27 mm.
To do this, a platform of about 130 x 75 cm was designed to capture the footsteps of people and transmit the impact force to sensors to determine the power generation capacity of the piezoelectric elements. Tests were carried out with people weighing between 75 kg and 85 kg and the measurements obtained made possible to identify the behavior of the system and to develop a mathematical model to estimate the energy generated through the platform.
The piezoelectric elements used here proved to be fragile despite the different types of shock absorbers used to avoid their rupture. Therefore, it is recommended to delve into the design of protection mechanisms to extend the life of piezoelectric elements in energy collection systems.

Keywords


Energy generation, Energy harvesting, Piezoelectricity, Vibration

Full Text:

PDF

References


M. Rajarathinam, «Energy generation in a hybrid harvester under harmonic excitation», Energy conversion and management, p., 2017, doi: 10.1016/j.enconman.2017.10.054.

J. G. Ascanio-Villabona, C. L. Sandoval-Rodriguez, A. D. Rincón-Quintero, B. E. Tarazona-Romero, y R. E. Paez-Castro, «Building a prototype for functional analysis of the energy potential of the water flow in pipe ½ “using microturbines applied to Unidades Tecnológicas de Santander», IOP Conf. Ser.: Mater. Sci. Eng., vol. 844, n.o 1, p. 012056, may 2020, doi: 10.1088/1757-899X/844/1/012056.

S. Rafique, «Overview of Vibration Energy Harvesting», en Piezoelectric Vibration Energy Harvesting: Modeling & Experiments, S. Rafique, Ed. Cham: Springer International Publishing, 2018, pp. 9-30. doi: 10.1007/978-3-319-69442-9_2.

A. Erturk, «Electromechanical Modeling of Piezoelectric Energy Harvesters», PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2009.

M. M. Solban y R. R. Moussa, «Piezoelectric Tiles Is a Sustainable Approach for Designing Interior Spaces and Creating Self-Sustain Projects.», IOP Conf. Ser.: Earth Environ. Sci., vol. 397, n.o 1, p. 012020, nov. 2019, doi: 10.1088/1755-1315/397/1/012020.

B. E. Tarazona-Romero, Á. Campos-Celador, Y. A. Muñoz-Maldonado, C. L. Sandoval-Rodríguez, y J. G. Ascanio-Villabona, «Prototype of lineal solar collector Fresnel: Artesanal system for the production of hot water and/or water vapor», Visión electrónica, vol. 14, n.o 1, Art. n.o 1, ene. 2020, doi: 10.14483/22484728.16013.

Y. K. Tan y S. K. Panda, «Energy Harvesting From Hybrid Indoor Ambient Light and Thermal Energy Sources for Enhanced Performance of Wireless Sensor Nodes», IEEE Transactions on Industrial Electronics, vol. 58, n.o 9, pp. 4424-4435, sep. 2011, doi: 10.1109/TIE.2010.2102321.

H. Okamoto, T. Suzuki, K. Mori, Z. Cao, T. Onuki, y H. Kuwano, «The advantages and potential of electret-based vibration-driven micro energy harvesters», International Journal of Energy Research, vol. 33, n.o 13, pp. 1180-1190, 2009, doi: 10.1002/er.1608.

S. R. Anton y H. A. Sodano, «A review of power harvesting using piezoelectric materials», Smart Mater. Struct., vol. 16, n.o 3, pp. R1-R21, may 2007, doi: 10.1088/0964-1726/16/3/R01.

A. Erturk y D. J. Inman, Piezoelectric Energy Harvesting. John Wiley & Sons, 2011.

A. D. Rincón-Quintero, C. L. Sandoval-Rodriguez, N D Zanabria-Ortigoza, C. G. Cárdenas-Arias, J. G. Ascanio-Villabona, y M. A. Durán-Sarmiento, «Generation and Capture of Electric Energy Using Piezoelectric Materials: A Review», IOP Conf. Ser.: Mater. Sci. Eng., vol. 1154, n.o 1, p. 012031, jun. 2021, doi: 10.1088/1757-899X/1154/1/012031.

X. Li y V. Strezov, «Modelling piezoelectric energy harvesting potential in an educational building», Energy Conversion and Management, vol. 85, pp. 435-442, sep. 2014, doi: 10.1016/j.enconman.2014.05.096.

H. S. Kim, J.-H. Kim, y J. Kim, «A review of piezoelectric energy harvesting based on vibration», Int. J. Precis. Eng. Manuf., vol. 12, n.o 6, pp. 1129-1141, dic. 2011, doi: 10.1007/s12541-011-0151-3.

F. Cascetta, A. Lo Schiavo, A. Minardo, M. Musto, G. Rotondo, y A. Calcagni, «Analysis of the energy extracted by a harvester based on a piezoelectric tile», Current Applied Physics, vol. 18, n.o 8, pp. 905-911, Agosto 2018, doi: 10.1016/j.cap.2018.04.015.

S. J. Hwang et al., «Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps», Current Applied Physics, vol. 15, n.o 6, pp. 669-674, jun. 2015, doi: 10.1016/j.cap.2015.02.009.

B. C. Chew, H. S. Loo, I. A. Bohari, S. R. Hamid, F. H. Sukri, y R. Kusumarwadani, «Feasibility of piezoelectric tiles adoption: A case study at Kuala Lumpur International Airport (KLIA) Malaysia», AIP Conference Proceedings, vol. 1818, n.o 1, p. 020009, mar. 2017, doi: 10.1063/1.4976873.

S. Du, Y. Jia, y A. A. Seshia, «Piezoelectric vibration energy harvesting: A connection configuration scheme to increase operational range and output power», Journal of Intelligent Material Systems and Structures, vol. 28, n.o 14, pp. 1905-1915, Agosto 2017, doi: 10.1177/1045389X16682846.

S. Kundu y H. B. Nemade, «Modeling and Simulation of a Piezoelectric Vibration Energy Harvester», Procedia Engineering, vol. 144, pp. 568-575, Enero 2016, doi: 10.1016/j.proeng.2016.05.043.

L. Noguera, «Potencial de generación de energía eléctrica con la tecnología piezoeléctrica aplicada al tránsito de bicicletas de la ciudad de Bogotá», Master Thesis, Universidad Libre, Bogotá, 2019. [En línea]. Disponible en: https://repository.unilibre.edu.co/handle/10901/18601

K.-B. Kim et al., «Optimized composite piezoelectric energy harvesting floor tile for smart home energy management», Energy Conversion and Management, vol. 171, pp. 31-37, sep. 2018, doi: 10.1016/j.enconman.2018.05.031.

A. Cortés, Ensaztiga Erick, y M. Pineda, «Diseño de un piso generador de energía eléctrica», Instituto Politécnico Nacional, México D.F., 2010.

R. Shreeshayana, L. Raghavendra, y V. Manjunath, «Piezoelectric Energy Harvesting using PZT in Floor Tile Design», IJAREEIE, vol. 6, n.o 12, 2017, doi: 10.15662/IJAREEIE.2017.0612018.

D. Kumar, P. Chaturvedi, y N. Jejurikar, «Piezoelectric energy harvester design and power conditioning», en 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, mar. 2014, pp. 1-6. doi: 10.1109/SCEECS.2014.6804491.

E. Maghsoudi Nia, N. A. Wan Abdullah Zawawi, y B. S. Mahinder Singh, «Design of a pavement using piezoelectric materials», Materialwissenschaft und Werkstofftechnik, vol. 50, n.o 3, pp. 320-328, 2019, doi: 10.1002/mawe.201900002.




DOI: http://dx.doi.org/10.21533/pen.v11i1.3179

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Camilo Leonardo Sandoval Rodriguez, Carlos Andres Angulo Julio, Arly Dario Rincón Quintero, Omar Lengerke, Nilson Yulian Castillo Leon

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License