Relationship between force signal and superficial electromyographic signals associated to hand movements

Camilo Leonardo Sandoval Rodriguez, Rodolfo Villamizar Mejia, Brayan Eduardo Tarazona Romero, Arly Dario Rincon Quintero, Alvaro Javier Rodriguez Nieves

Abstract


The analysis of electromyographic signals is applied both to the diagnosis of pathologies and to the recognition of movement patterns. Variables such as force and speed of movement are factors that affect the characteristics of the signals of surface electromyography (SMEG). The naturalness of the movements of the hand are also associated with strength and speed. Current work assessment 96 records of SEMG -Force). The objective was to obtain a linear model that would allow the relation of the force signal with the tone of the forearm SEMG signals. The work results show models at the determination coefficient R2 - median 0.78. The SEMG signal would contribute to the variation of the strength signal. However, there are appreciable differences in relation to the model in each type of hand movement.

Keywords


Forearm SEMG, Hand Movements, Force Signal, Linear Model

Full Text:

PDF

References


A. Córdova, I. Nuin, D. Fernández-Lázaro, I. Latasa, and J. Rodríguez-Falces, “Actividad electromiográfica (EMG) durante el pedaleo, su utilidad en el diagnóstico de la fatiga en cidistas,” Arch. Med. del Deport., vol. 34, no. 4, pp. 217–223, 2017.

F. J. Alonso, G. Galán-Marín, D. Salgado, R. Pàmies-Vilà, and J. M. Font-Llagunes, “Cálculo de esfuerzos musculares en la marcha humana mediante optimización estática-fisiológica,” XVIII Congr. Nac. Ing. mecánica, pp. 1–9, 2010, [Online]. Available: http://www.uclm.es/actividades/2010/CongresoIM/pdf/cdarticulos/017.pdf.

H. Su, W. Qi, Z. Li, Z. Chen, G. Ferrigno, and E. De Momi, “Deep Neural Network Approach in EMG-Based Force Estimation for Human–Robot Interaction,” IEEE Trans. Artif. Intell., vol. 2, no. 5, pp. 404–412, 2021, doi: 10.1109/tai.2021.3066565.

J. A. Dominguez Jimenez, “Análisis de las señales EMG de superficie del bíceps durante la ejecución de ejercicios con pesas,” p. 35, 2015.

K. Nagata, K. Ando, K. Magatani, and M. Yamada, “Development of the hand motion recognition system based on surface EMG using suitable measurement channels for pattern recognition,” Annu. Int. Conf. IEEE Eng. Med. Biol. - Proc., p. 5214, 2007, doi: 10.1109/IEMBS.2007.4353517.

M. Futamata, K. Nagata, and K. Magatani, “The evaluation of the discriminant ability of multiclass SVM in a study of hand motion recognition by using SEMG,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 5246–5249, 2012, doi: 10.1109/EMBC.2012.6347177.

L. H. Smith and L. J. Hargrove, “Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 4223–4226, 2013, doi: 10.1109/EMBC.2013.6610477.

R. & R. Cortes, Guerrero, “SISTEMA DETECTOR DE INTENCIÓN DE MOVIMIENTO A PARTIR SISTEMA DETECTOR DE INTENCIÓN DE MOVIMIENTO A PARTIR DE SEÑALES ELECTROMIOGRÁFICAS SUPERFICIALES,” pp. 75–83, 2013.

M. Ortiz-Catalan, B. Håkansson, and R. Brånemark, “Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4, pp. 756–764, 2014, doi: 10.1109/TNSRE.2014.2305097.

E. J. Earley, A. A. Adewuyi, and L. J. Hargrove, “Optimizing pattern recognition-based control for partial-hand prosthesis application,” 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC 2014, pp. 3574–3577, 2014, doi: 10.1109/EMBC.2014.6944395.

A. F. Ruiz-Olaya, M. Callejas-Cuervo, and A. M. Perez, “EMG-based pattern recognition with kinematics information for hand gesture recognition,” 2015 20th Symp. Signal Process. Images Comput. Vision, STSIVA 2015 - Conf. Proc., pp. 1–4, 2015, doi: 10.1109/STSIVA.2015.7330409.

M. AbdelMaseeh, T. W. Chen, and D. W. Stashuk, “Extraction and Classification of Multichannel Electromyographic Activation Trajectories for Hand Movement Recognition,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 6, pp. 662–673, 2016, doi: 10.1109/TNSRE.2015.2447217.

J. Mouchoux, S. Carisi, S. Dosen, D. Farina, A. F. Schilling, and M. Markovic, “Artificial Perception and Semiautonomous Control in Myoelectric Hand Prostheses Increases Performance and Decreases Effort,” IEEE Trans. Robot., vol. 37, no. 4, pp. 1298–1312, 2021, doi: 10.1109/TRO.2020.3047013.

C. L. Sandoval Rodriguez, “Caracterización de la dinámica de los movimientos básicos de la mano a partir de la actividad electromiográfica del antebrazo,” Universidad Industrial de Santander, 2013.

J. Cantillo Maldonado, Alejandro. Gualdron Guerrero, Oscar. Ortiz Sandoval, “SIGNAL-PROCESSING EMG IN AN EMBEDDED SYSTEM FOR CONTROL NEURONAL OF A ROBOTIC ARM,” pp. 139–147, 2018.

N. Artificial, F. Zahira, and L. R. Perez, “Clasificación de señales electromiografías mediante la configuración de una Red Neurona Artificial,” Cult. Científica y Tecnológica, vol. 0, no. 58, 2016.

K. Anam and A. Al-Jumaily, “Adaptive myoelectric pattern recognition for arm movement in different positions using advanced online sequential extreme learning machine,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2016-Octob, pp. 900–903, 2016, doi: 10.1109/EMBC.2016.7590846.

G. Beninati and V. Sanguineti, “A dynamic model of hand movements for proportional myoelectric control of a hand prosthesis∗,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 6648–6651, 2019, doi: 10.1109/EMBC.2019.8857090.

C. L. Sandoval-Rodriguez, A. C. Pita-Mejia, Villamizar-Mejia R, B. E. Tarazona-Romero, and O. Lengerke-Perez, “Model to Relationship the Speed of Hand Movements with the SEMG Signals from the Forearm,” 2022, doi: 10.1088/1742-6596/2224/1/012094.

L. A. Zabala Aguiar, “Desarrollo de un sistema de adquisición y procesamiento de señales electromiográficas con matlab para la identificación de los movimientos extensión, flexión, pronación y supinación de un brazo humano,” pp. 7–58, 2017, [Online]. Available: http://dspace.espoch.edu.ec/bitstream/123456789/7546/1/20T00917.PDF.

C. L. Sandoval-Rodriguez, E. Y. Veslin-Díaz, B. E. Tarazona-Romero, J. G. Ascanio-Villabona, C. G. Cárdenas-Arias, and C. A. Angulo-Julio, “Electromechanical Hand Prototype for the Simulation of the Opening and Closing Movement,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1154, no. 1, p. 012035, 2021, doi: 10.1088/1757-899x/1154/1/012035.

C. Sandoval Rodríguez, R. Villamizar Mejía, E. Delgado Velosa, and A. Cordero Cardozo, “Estimación de velocidad del movimiento de mano usando redes neuronales artificiales y mediciones electromiográfíca,” Rev. Ing. Biomédica, vol. 4, no. 8, pp. 41–56, 2010, doi: 10.24050/19099762.n8.2010.114.

C. Mokri, M. Bamdad, and V. Abolghasemi, “Muscle force estimation from lower limb EMG signals using novel optimised machine learning techniques,” Medical and Biological Engineering and Computing, vol. 60, no. 3. pp. 683–699, 2022, doi: 10.1007/s11517-021-02466-z.

R. Kawama, H. Maemura, and S. Tanigawa, “Regional difference in the EMG-force relationship of the hamstring muscles during knee flexion,” J. Phys. Fit. Sport. Med., vol. 10, no. 5, pp. 233–241, 2021, doi: 10.7600/jpfsm.10.233.

A. García-Fogeda and R. Usach Minguillón, “Relación entre la fuerza y la electromiografía (EMG) del vasto interno del cuádriceps, en movimientos de media sentadilla con carga,” Biomecánica, no. September, 2008, doi: 10.5821/sibb.v14i2.1743.

C. Anders, K. Sander, F. Layher, S. Patenge, and R. W. Kinnei, “Temporal and spatial relationship between gluteal muscle Surface EMG activity and the vertical component of the ground reaction force during walking,” PLoS ONE, vol. 16, no. 5 May. 2021, doi: 10.1371/journal.pone.0251758.

C. Huang, M. Chen, Y. Zhang, S. Li, and P. Zhou, “Model-Based Analysis of Muscle Strength and EMG-Force Relation with respect to Different Patterns of Motor Unit Loss,” Neural Plast., vol. 2021, 2021, doi: 10.1155/2021/5513224.

I. Chihi, L. Sidhom, and E. N. Kamavuako, “Hammerstein–Wiener Multimodel Approach for Fast and Efficient Muscle Force Estimation from EMG Signals,” Biosensors, vol. 12, no. 2, pp. 1–15, 2022, doi: 10.3390/bios12020117.

E. H. Galvis-Serrano, I. Sánchez-Galvis, N. Flórez, and S. Zabala-Vargas, “Clasificación de Gestos de la Lengua de Señas Colombiana a partir del Análisis de Señales Electromiográficas utilizando Redes Neuronales Artificiales,” Inf. tecnológica, vol. 30, no. 2, pp. 171–180, 2019, doi: 10.4067/s0718-07642019000200171.

W. Seok, Y. Kim, and C. Park, “Pattern recognition of human arm movement using deep reinforcement learning,” Int. Conf. Inf. Netw., vol. 2018-Janua, pp. 917–919, 2018, doi: 10.1109/ICOIN.2018.8343257.

M. Nakatani, K. Murata, H. Kanehisa, and Y. Takai, “Force-velocity relationship profile of elbow flexors in male gymnasts,” PeerJ, vol. 9, pp. 1–18, 2021, doi: 10.7717/peerj.10907.

O. E. Amado Duarte, Laura Yazmin, Perez, “OBTENCIÓN EXPERIMENTAL DE FUNCIONES DE TRANSFERENCIA QUE RELACIONAN LA FUERZA APLICADA EN LOS MOVIMIENTOS BÁSICOS DE LA MANO CON LA ACTIVIDAD ELECTROMIOGRÁFICA DEL ANTEBRAZO.” Universidad Industrial de Santander, Bucaramanga Colombia, 2010.

H. Akima, H. Maeda, T. Koike, and K. Ishida, “Effect of elbow joint angles on electromyographic activity versus force relationships of synergistic muscles of the triceps brachii,” PLoS ONE, vol. 16, no. 6 June. 2021, doi: 10.1371/journal.pone.0252644.




DOI: http://dx.doi.org/10.21533/pen.v11i1.3173

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Camilo Leonardo Sandoval Rodriguez, Rodolfo Villamizar Mejia, Brayan Eduardo Tarazona Romero, Arly Dario Rincon Quintero, Alvaro Javier Rodriguez Nieves

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License