Coefficient bounds for a subclass of Sakaguchi type functions using Chebyshev polynomial

N. P. Damodaran, Srutha Keerthi


In this work, considering a general subclass of bi-univalent Sakaguchi type functions and using Chebyshev polynomials, we obtain coefficient expansions for functions in this class.

Full Text:



S. Altinkaya and S. Yalcin, “Initial coefficient bounds for a general class of bi-univalent functions”, International Journal of Analysis, Article ID 867871 (2014), 4 pp.

S. Altinkaya and S. Yalcin, “Coefficient bounds for a subclass of bi-univalent functions”, TWMS Journal of Pure and Applied Mathematics, 6(2) 2015.

D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babeș-Bolyai. Mathematica, 31(2) (1986), 7077.

D.A. Brannan and J.G. Clunie, “Aspects of comtemporary complex analysis”, Proceedings of the NATO Advanced Study Instute Held at University of Durham: july 120, 1979). New York: Academic Press, (1980).

S. Bulut, “Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions”, C.R. Acad. Sci. Paris, Ser. I, 352 (6) (2014), 479484.

O. Crișan, “Coefficient estimates certain subclasses of bi-univalent functions”, Gen. Math. Notes, 16 (2) (2013), 931002.

P.L. Duren, “Univalent Functions”, Grundlehren der Mathematischen Wissenschaften Springer, New York, USA, 259 1983.

E.L. Doha, “The first and second kind Chebyshev coefficients of the moments of the general-order derivative of an infinitely differential function,” Intern. J. Comput. Math., 51 (1994), 2135.

S.G. Hamidi and J.M. Jahangiri, “Faber polynomial coefficient estimates for analytic bi-close-to-convex functions,” C.R. Acad. Sci. Paris, Ser. I, 352 (1) (2014), 1720.

J.M. Jahangiri and S.G. Hamidi, “Coefficient estimates for certain classes of bi-univalent functions,” Int. J. Math. Sci., Article ID 190560, (2013), 4pp.

M. Lewin, “On a coefficient problem for bi-univalent functions,” Proceeding of the American Mathematical Society, 18 (1967), 6368.

N. Magesh and J. Yamini, “coefficient bounds for a certain subclass of bi-univalent functions,” International Mathematical Forum, 8 (27) (2013), 13371344.

J.C. Manson, “Chebyshev polynomials approximations for the L-membrane eigenvalue problem,” SIAM J. Appl. Math., 15 (1967), 172186.

E. Netanyahu, “The minimal distance of the image boundary from the orijin and the second coefficient of a univalent function in |z| < 1,” Archive for Rational Mechanics and Analysis, 32 (1969), 100112.

S. Porwel and M. Darus, “On a new subclass of bi-univalent functions,” J. Egypt. Math. Soc., 21 (3) (2013), 190193.

B. Srutha keerthi, “Fekete-Szegö Type equalities For certain subclasses of sakaguchi type functions,” Romai journal, 8(2), 2012, 119127.

B. Srutha keerthi and B. Raja, “coefficient inequality for certain new subclasses of analytic bi-univalent functions,” Theoretical Mathematics and Applications, 3 (1) (2013), 110.



  • There are currently no refbacks.

Copyright (c) 2019 Damodaran P

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License