The effect of nano-Lubricant TiO2 in cooling system R134a on vapour compression cooling system
Abstract
Keywords
Full Text:
PDFReferences
T. O. Babarinde, S. A. Akinlabi, D. M. Madyira, F. M. Ekundayo, and P. A. Adedeji, “Dataset and ANN model prediction of performance of graphene nanolubricant with R600a in domestic refrigerator system,” Data Br., vol. 32, p. 106098, 2020.
K. Singh and K. Lal, “An investigation into the performance of a nanocooling system (R134a+ Al2O3) based cooling system,” Int. J. Res. Mech. Eng. Technol., vol. 4, no. 2, pp. 158–162, 2014.
L. Kundan and K. Singh, “Improved performance of a nanocooling system-based vapor compression cooling system: A new alternative,” Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 235, no. 1, pp. 106–123, 2021.
A. A. S. Abed, “Influence of ZnO nano-cooling system in R134a on performance compression systems of cooling,” Period. Eng. Nat. Sci., vol. 9, no. 3, pp. 734–744, 2021.
O. O. Ajayi et al., “Investigation of the effect of R134a/Al2O3–nanofluid on the performance of a domestic vapour compression cooling system,” Procedia Manuf., vol. 35, pp. 112–117, 2019.
O. A. Alawi and N. A. C. Sidik, “Applications of nanocooling system and nanolubricants in cooling, air-conditioning and heat pump systems: A review,” Int. Commun. Heat Mass Transf., vol. 68, pp. 91–97, 2015.
R. Ande, R. S. R. Koppala, and M. Hadi, “Experimental investigation on VCR system using nano-cooling system for COP enhancement,” Chem. Eng. Trans., vol. 71, pp. 967–972, 2018.
M. E. Haque, R. A. Bakar, K. Kadirgama, M. M. Noor, and M. Shakaib, “Performance of a domestic refrigerator using nanomotes-based polyolester oil lubricant,” J. Mech. Eng. Sci., vol. 10, no. 1, pp. 1778–1791, 2016.
N. Kamaraj and M. Babu, “Experimental analysis of Vapour Compression Cooling System using the cooling system with Nano motes,” in International Conference on Engineering Innovations and Solutions (ICEIS), 2016, pp. 16–25.
M. A. Kedzierski, “Effect of concentration on R134a/Al2O3 nanolubricant mixture boiling on a reentrant cavity surface,” Int. J. Refrig., vol. 49, pp. 36–48, 2015.
R. Kumar, “Effect of Nanomotes on Performance Characteristics of Cooling Cycle,” Low- glow Technol., p. 101, 2019.
K. Mani and V. Selladurai, “Experimental analysis of a new cooling system mixture as drop-in replacement for CFC12 and HFC134a,” Int. J. Therm. Sci., vol. 47, no. 11, pp. 1490–1495, 2008.
R. S. Mishra and R. K. Jaiswal, “Thermal Performance Improvements of Vapour Compression Cooling System Using Eco Friendly Based Nanocooling systems in Primary Circuit,” Int. J. Adv. Res. Innov., vol. 3, no. 3, pp. 524–535, 2015.
F. Selimefendigil, “Experimental investigation of nano compressor oil effect on the cooling performance of a vapor-compression cooling system,” J. Therm. Eng., vol. 5, no. 1, pp. 100–104, 2019.
A. M. A. Soliman, S. H. Taher, A. K. Abdel-Rahman, and S. Ookawara, “Performance enhancement of vapor compression cycle using nano materials,” in 2015 International Conference on Renewable Energy Research and Applications (ICRERA), 2015, pp. 821–826.
N. Subramani and M. J. Prakash, “Experimental studies on a vapour compression system using nanocooling systems,” Int. J. Eng. Sci. Technol., vol. 3, no. 9, pp. 95–102, 2011.
DOI: http://dx.doi.org/10.21533/pen.v10i1.2684
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Abbas Alwi Sakhir
This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2303-4521
Digital Object Identifier DOI: 10.21533/pen
This work is licensed under a Creative Commons Attribution 4.0 International License