Correlation of model quality between predicted proteins and their templates
Abstract
Keywords
Full Text:
PDFReferences
“Introduction to Proteins: Structure, Function, and Motion, Second Edition,” CRC Press. https://www.crcpress.com/Introduction-to-Proteins-Structure-Function-and-Motion-Second-Edition/Kessel-Ben-Tal/p/book/9781498747172 (accessed Oct. 02, 2019).
R. A. Chica, “Protein Engineering in the 21st Century,” Protein Sci. Publ. Protein Soc., vol. 24, no. 4, pp. 431–433, Apr. 2015, doi: 10.1002/pro.2656.
C. A. Orengo, A. E. Todd, and J. M. Thornton, “From protein structure to function,” Curr. Opin. Struct. Biol., vol. 9, no. 3, pp. 374–382, Jun. 1999, doi: 10.1016/S0959-440X(99)80051-7.
“Comparison of Crystallography, NMR and EM - Creative Biostructure.” https://www.creative-biostructure.com/comparison-of-crystallography-nmr-and-em_6.htm (accessed Oct. 30, 2019).
R. P. D. Bank, “RCSB PDB: Homepage.” https://www.rcsb.org/ (accessed Oct. 02, 2019).
A. Fiser, “Template-based protein structure modeling,” Methods Mol. Biol. Clifton NJ, vol. 673, pp. 73–94, 2010, doi: 10.1007/978-1-60761-842-3_6.
J. Lee, P. L. Freddolino, and Y. Zhang, “Ab Initio Protein Structure Prediction,” in From Protein Structure to Function with Bioinformatics, D. J. Rigden, Ed. Dordrecht: Springer Netherlands, 2017, pp. 3–35. doi: 10.1007/978-94-024-1069-3_1.
S. Vangaveti, T. Vreven, Y. Zhang, and Z. Weng, “Integrating ab initio and template-based algorithms for protein–protein complex structure prediction,” Bioinformatics, doi: 10.1093/bioinformatics/btz623.
S. Abeln, J. Heringa, and K. A. Feenstra, “Strategies for protein structure model generation,” 2017.
Y. Zhang, “Protein Structure Prediction: Is It Useful?,” Curr. Opin. Struct. Biol., vol. 19, no. 2, pp. 145–155, Apr. 2009, doi: 10.1016/j.sbi.2009.02.005.
J. Cheng, A. N. Tegge, and P. Baldi, “Machine Learning Methods for Protein Structure Prediction,” IEEE Rev. Biomed. Eng., vol. 1, pp. 41–49, 2008, doi: 10.1109/RBME.2008.2008239.
M. Gao, H. Zhou, and J. Skolnick, “DESTINI: A deep-learning approach to contact-driven protein structure prediction,” Sci. Rep., vol. 9, no. 1, pp. 1–13, Mar. 2019, doi: 10.1038/s41598-019-40314-1.
S. Wang, J. Peng, J. Ma, and J. Xu, “Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields,” Sci. Rep., vol. 6, p. 18962, Jan. 2016, doi: 10.1038/srep18962.
S. P. Nguyen, Y. Shang, and D. Xu, “DL-PRO: A novel deep learning method for protein model quality assessment,” in 2014 International Joint Conference on Neural Networks (IJCNN), Jul. 2014, pp. 2071–2078. doi: 10.1109/IJCNN.2014.6889891.
R. Cao, B. Adhikari, D. Bhattacharya, M. Sun, J. Hou, and J. Cheng, “QAcon: single model quality assessment using protein structural and contact information with machine learning techniques,” Bioinformatics, vol. 33, no. 4, pp. 586–588, Feb. 2017, doi: 10.1093/bioinformatics/btw694.
K. Uziela, D. Menéndez Hurtado, N. Shu, B. Wallner, and A. Elofsson, “ProQ3D: improved model quality assessments using deep learning,” Bioinformatics, vol. 33, no. 10, pp. 1578–1580, May 2017, doi: 10.1093/bioinformatics/btw819.
R. Cao, Z. Wang, Y. Wang, and J. Cheng, “SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines,” BMC Bioinformatics, vol. 15, no. 1, p. 120, Apr. 2014, doi: 10.1186/1471-2105-15-120.
C. L. P. Gupta, A. Bihari, and S. Tripathi, “Protein Classification using Machine Learning and Statistical Techniques: A Comparative Analysis,” ArXiv190106152 Cs Q-Bio Stat, Jan. 2019, Accessed: Oct. 02, 2019.
[Online]. Available: http://arxiv.org/abs/1901.06152
A. Dalkiran, A. S. Rifaioglu, M. J. Martin, R. Cetin-Atalay, V. Atalay, and T. Doğan, “ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature,” BMC Bioinformatics, vol. 19, no. 1, p. 334, Sep. 2018, doi: 10.1186/s12859-018-2368-y.
A. Runthala and S. Chowdhury, “Refined template selection and combination algorithm significantly improves template-based modeling accuracy,” J. Bioinform. Comput. Biol., vol. 17, no. 02, p. 1950006, Nov. 2018, doi: 10.1142/S0219720019500069.
S. Bienert et al., “The SWISS-MODEL Repository-new features and functionality,” Nucleic Acids Res., vol. 45, no. D1, pp. D313–D319, 04 2017, doi: 10.1093/nar/gkw1132.
M. Adilović and A. Hromić-Jahjefendić, “Feature Importance in the Quality of Protein Templates,” Period. Eng. Nat. Sci. PEN, vol. 9, no. 2, Art. no. 2, Apr. 2021, doi: 10.21533/pen.v9i2.1830.
“PDB101: Learn: Guide to Understanding PDB Data: Introduction,” RCSB: PDB-101. http://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction (accessed Oct. 02, 2019).
G. J. Kleywegt and T. A. Jones, “Phi/psi-chology: Ramachandran revisited,” Struct. Lond. Engl. 1993, vol. 4, no. 12, pp. 1395–1400, Dec. 1996, doi: 10.1016/s0969-2126(96)00147-5.
H. Zhou and Y. Zhou, “Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction,” Protein Sci., vol. 11, no. 11, pp. 2714–2726, 2002, doi: 10.1110/ps.0217002.
R. Lüthy, J. U. Bowie, and D. Eisenberg, “Assessment of protein models with three-dimensional profiles,” Nature, vol. 356, no. 6364, pp. 83–85, Mar. 1992, doi: 10.1038/356083a0.
J. U. Bowie, R. Lüthy, and D. Eisenberg, “A method to identify protein sequences that fold into a known three-dimensional structure,” Science, vol. 253, no. 5016, pp. 164–170, Jul. 1991, doi: 10.1126/science.1853201.
R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, “PROCHECK: a program to check the stereochemical quality of protein structures,” J. Appl. Crystallogr., vol. 26, no. 2, Art. no. 2, Apr. 1993, doi: 10.1107/S0021889892009944.
C. Colovos and T. O. Yeates, “Verification of protein structures: patterns of nonbonded atomic interactions,” Protein Sci. Publ. Protein Soc., vol. 2, no. 9, pp. 1511–1519, Sep. 1993, doi: 10.1002/pro.5560020916.
J. Pontius, J. Richelle, and S. J. Wodak, “Deviations from standard atomic volumes as a quality measure for protein crystal structures,” J. Mol. Biol., vol. 264, no. 1, pp. 121–136, Nov. 1996, doi: 10.1006/jmbi.1996.0628.
P. Benkert, M. Biasini, and T. Schwede, “Toward the estimation of the absolute quality of individual protein structure models,” Bioinforma. Oxf. Engl., vol. 27, no. 3, pp. 343–350, Feb. 2011, doi: 10.1093/bioinformatics/btq662.
M. Shen and A. Sali, “Statistical potential for assessment and prediction of protein structures,” Protein Sci. Publ. Protein Soc., vol. 15, no. 11, pp. 2507–2524, Nov. 2006, doi: 10.1110/ps.062416606.
K. Olechnovič and Č. Venclovas, “VoroMQA: Assessment of protein structure quality using interatomic contact areas,” Proteins Struct. Funct. Bioinforma., vol. 85, no. 6, pp. 1131–1145, 2017, doi: 10.1002/prot.25278.
W. R. Pearson, “An Introduction to Sequence Similarity (‘Homology’) Searching,” Curr. Protoc. Bioinforma. Ed. Board Andreas Baxevanis Al, vol. 0 3, Jun. 2013, doi: 10.1002/0471250953.bi0301s42.
X. Deng, J. Li, and J. Cheng, “Predicting Protein Model Quality from Sequence Alignments by Support Vector Machines,” J. Proteomics Bioinform., vol. Suppl 9, Nov. 2013, doi: 10.4172/jpb.S9-001.
DOI: http://dx.doi.org/10.21533/pen.v10i1.2018
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Muhamed Adilović, Altijana Hromić-Jahjefendić
This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2303-4521
Digital Object Identifier DOI: 10.21533/pen
This work is licensed under a Creative Commons Attribution 4.0 International License