Characterization of mechanical vibrations in a metal structure using the transform Cepstrum

Camilo Leonardo Sandoval Rodriguez, Edgar Alfonso Correa-Quintana, Brayan Eduardo Tarazona-Romero, Arly Dario Rincón-Quintero, Jessica Gissella Maradey-Lazaro


This work adequately characterizes and correlates the effects generated by inducing mechanical vibrations on a metallic structure as a means of determining or predicting potential alterations or failures in bodies used in civil and industrial works of a static nature. Vibration sensors (piezoelectric), experimental information capture software (Labview) and the application of signal processing and classification tools were used for this. Various previous works have used signal processing techniques such as Fourier and Wavelet. These show indications about the relationship between the processed signals and the structural alterations of the different tests. On this occasion, through the use of Cepstrum analysis as an alternative tool for the processing of mechanical vibrations and complementary to the use of a dissimilarity technique (Euclidean distance) for the assessment of the ability to differentiate between classes grouped according to the anomaly studied and The use of statistical indicators to evaluate the homogeneity of the data has made it possible to show deviations that can be linked to structural defects (perforation, welding, denting and shear) of a metallic armor at the laboratory level. Finally, it was evidenced that the use of Cepstrum coefficients as characteristic information of the anomaly, at an experimental level, broadens the knowledge base and undoubtedly allows the implementation of the bases to encourage the academic and commercial development of tools or techniques for remote inspection of static equipment that is of great use to society.


Detection of structural alterations; Cepstral coefficients; Mechanical vibrations

Full Text:




C. L Sandoval Rodríguez, A. A Barros, & S Herreño. “Clasificación automática de patrones de vibraciones mecánicas en maquinaria rotativa afectada por desbalanceo”. INGE@UAN - TENDENCIAS EN LA INGENIERÍA, 4(7). Recuperado a partir de 2013

J. L., Parada, A. M. P Velásquez, M.& Vergara. “Sistema de adquisición de datos para análisis de desbalance en máquinas rotativas”. in REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA, 1(31), 89-95. 2018. doi: 0.24054/16927257.v31.n31.2018.2770

L. Ciabattoni, F.Ferracuti, A. Freddi, & A Monteriu. “Statistical spectral analysis for fault diagnosis of rotating machines” in. IEEE Transactions on Industrial Electronics, 65(5), 4301-4310. 2017. doi: 10.1109/TIE.2017.2762623.

G. Zhou, Z. Li, Z. Zhu, B.Hao & C. Tang,. “A new piezoelectric bimorph energy harvester based on the vortex-induced-vibration applied in rotational machinery” in. IEEE/ASME Transactions on Mechatronics, 24(2), 700-709. 2019. doi: 10.1109/TMECH.2019.2892387

H. Ahmed, & A. Nandi, “Three-Stage Method for Rotating Machine Health Condition Monitoring Using Vibration Signals”. In 2018 Prognostics and System Health Management Conference (PHM-Chongqing) (pp. 285-291). IEEE. October 2018. doi: 10.1109/PHM-Chongqing.2018.00055

T. Wang, G. Lu, & P. Yan. “Multi-sensors-based condition monitoring of rotary machines: An approach of multidimensional time-series analysis. Measurement”, 134, 326-335. 2019. doi: 10.1016/j.measurement.2018.10.089.

X.Li, F.Duan, D. Mba, , & I. Bennett, “Multidimensional prognostics for rotating machinery: A review”. Advances in Mechanical Engineering, 9(2), 2017. doi: 10.1177/1687814016685004

X. Wang, G. Lu, & P.Yan, “Multiple regression analysis based approach for condition monitoring of industrial rotating machinery using multi-sensors”. In 2019 Prognostics and System Health Management Conference (PHM-Qingdao) (pp. 1-5). IEEE. 2019, October. doi: 10.1109/PHM-Qingdao46334.2019.8942902

C. L. Sandoval-Rodriguez, J. A. Villabona, C. G. Cárdenas-Arias, , A. D. Rincón-Quintero, & B. E. Tarazona-Romero, “Characterization of the mechanical vibration signals associated with unbalance and misalignment in rotating machines, using the cepstrum transformation and the principal component analysis”. In IOP Conference Series: Materials Science and Engineering (Vol. 844, No. 1, p. 012057). IOP Publishing. 2020 May, doi: 10.1088/1757-899X/844/1/012057

C.L. Sandoval-Rodriguez, B.E. Tarazona-Romero, O. Lengerke-Perez, C.G. Cárdenas-Arias, D.C. Dulcey Diaz, O.A. Acosta Cárdenas “Descriptive Study of a Rotary Machine Affected by Misalignment and Imbalance Applying the Wavelet Transform”. In: Botto Tobar M., Cruz H., Díaz Cadena A. (eds) Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2020. Lecture Notes in Electrical Engineering, vol 763. Springer, Cham. 2021 doi:10.1007/978-3-030-72212-8_17

P. Lipinski, , E. Brzychczy, , & R. Zimroz. “Decision tree-based classification for Planetary Gearboxes’ condition monitoring with the use of vibration data in multidimensional symptom space”. Sensors, 20(21), 5979. 2020. doi:10.3390/s20215979.

A. V. Jaimes, J.Carrillo, & L. A. V. Carvajal. “Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental”. INGE CUC, 14(1), 52-65., 2018. doi: 10.17981/ingecuc.14.1.2018.05

Y. C.Liu-Kuan, , & P. Agüero-Barrantes. “Introducción al monitoreo de la condición estructural de puentes” . 2017 consultada en 2021..URL:

P. Cawley, “Structural health monitoring: Closing the gap between research and industrial deployment”. Structural Health Monitoring, 17(5), 1225-1244 , 2018..doi: 10.1177/1475921717750047

C. Cárdenas, C. Sandoval, J. & Gómez. “Implementación de una mesa vibratoria triaxial neumática para el análisis de estructuras y el movimiento sísmico”. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 2(32), 98-103. 2018. doi: 16927257.v32.n32.2018.3032

U. Nawrot, T. Geernaert, B. De Pauw, D. Anastasopoulos, E. Reynders, G. De Roeck & F. Berghmans, “Mechanical strain-amplifying transducer for fiber Bragg grating sensors with applications in structural health monitoring”. In 2017 25th Optical Fiber Sensors Conference (OFS) (pp. 1-4). IEEE. 2017, April. doi: 10.1117/12.2264614

W. S. Na, & J.Baek. “A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures”. Sensors, 18(5), 1307. (2018).doi: 10.3390/s18051307

M. M. Uddin, N. Devang, A. K. Azad & V. Demir. “Remote Structural Health Monitoring for Bridges. In International Conference on Remote Engineering and Virtual Instrumentation “(pp. 363-377). Springer, Cham 2018, March. doi: 10.1007/978-3-319-95678-7_41

J. Zhang, G. Y. Tian, A. M. Marindra, A. I. Sunny, & A. B. Zhao. “A review of passive RFID tag antenna-based sensors and systems for structural health monitoring applications”. Sensors, 17(2), 265. 2017doi: 10.3390/s17020265

B. Tarazona, & C. Sandoval. “Evaluación de discontinuidades tipo grietas y fisuras en estructuras de hormigón empleando un analizador de vibraciones y procesamiento digital de imágenes”. Entre Ciencia e Ingeniería, 85-94. 2019. doi: 10.31908/19098367.4018

B. E. Romero-Tarazona, C. L. Rodriguez-Sandoval, J. G. Villabona-Ascanio, &, A. D. Rincón-Quintero. “Development of an artificial vision system that allows non-destructive testing on flat concrete slabs for surface crack detection by processing of digital images in MATLAB”. In IOP Conference Series: Materials Science and Engineering (Vol. 844, No. 1, p. 012058). IOP Publishing. 2020, May. doi: 10.1088/1757-899x/844/1/012058

S. Roy, T. Bose, & K. Debnath. “Analytical and numerical study of local defect resonance frequencies in fibre metal laminates”. In 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE) (pp. 1-5). IEEE. 2018, June. doi: 10.1109/EPETSG.2018.8658968

B. E. Tarazona, C. L. Sandoval, C. G. C. Arias, J. G. Ascanio & J. J. Valencia.” Detection of structural alterations in metal bodies: An approximation using Fourier transform and principal component analysis (PCA)”. Scientia et Technica, 25(2), 255-260. 2020 doi 10.22517/23447214.23501

Y. Pan, , & L.Zhang. “ Roles of artificial intelligence in construction engineering and management: A critical review and future trends”. Automation in Construction, 122, 103517 2021.doi: 10.1016/j.autcon.2020.103517

L. Barbini, M. Eltabach & J Du Bois. “Application of cepstrum prewhitening on non-stationary signals. In International Congress on Technical Diagnostics and Condition Monitoring of Machinery in Non-Stationary Operations” 2016, September.



  • There are currently no refbacks.

Copyright (c) 2021 Camilo Leonardo Sandoval Rodriguez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License