Characterization of mechanical vibrations in a metal structure using the transform Cepstrum
Abstract
Keywords
Full Text:
PDFReferences
E. G. H. Vega, & S. I. C Estrada, “MÉTODO DE INSTRUMENTACIÓN INDIRECTA BASADO EN ONDAS ACÚSTICAS DERIVADAS DE VIBRACIONES MECÁNICAS PARA LA ESTIMACIÓN DE VELOCIDAD ANGULAR EN MAQUINARIA ROTATIVA”.in Pistas Educativas, 39(128). 2018
C. L Sandoval Rodríguez, A. A Barros, & S Herreño. “Clasificación automática de patrones de vibraciones mecánicas en maquinaria rotativa afectada por desbalanceo”. INGE@UAN - TENDENCIAS EN LA INGENIERÍA, 4(7). Recuperado a partir de http://revistas.uan.edu.co/index.php/ingeuan/article/view/361. 2013
J. L., Parada, A. M. P Velásquez, M.& Vergara. “Sistema de adquisición de datos para análisis de desbalance en máquinas rotativas”. in REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA, 1(31), 89-95. 2018. doi: 0.24054/16927257.v31.n31.2018.2770
L. Ciabattoni, F.Ferracuti, A. Freddi, & A Monteriu. “Statistical spectral analysis for fault diagnosis of rotating machines” in. IEEE Transactions on Industrial Electronics, 65(5), 4301-4310. 2017. doi: 10.1109/TIE.2017.2762623.
G. Zhou, Z. Li, Z. Zhu, B.Hao & C. Tang,. “A new piezoelectric bimorph energy harvester based on the vortex-induced-vibration applied in rotational machinery” in. IEEE/ASME Transactions on Mechatronics, 24(2), 700-709. 2019. doi: 10.1109/TMECH.2019.2892387
H. Ahmed, & A. Nandi, “Three-Stage Method for Rotating Machine Health Condition Monitoring Using Vibration Signals”. In 2018 Prognostics and System Health Management Conference (PHM-Chongqing) (pp. 285-291). IEEE. October 2018. doi: 10.1109/PHM-Chongqing.2018.00055
T. Wang, G. Lu, & P. Yan. “Multi-sensors-based condition monitoring of rotary machines: An approach of multidimensional time-series analysis. Measurement”, 134, 326-335. 2019. doi: 10.1016/j.measurement.2018.10.089.
X.Li, F.Duan, D. Mba, , & I. Bennett, “Multidimensional prognostics for rotating machinery: A review”. Advances in Mechanical Engineering, 9(2), 2017. doi: 10.1177/1687814016685004
X. Wang, G. Lu, & P.Yan, “Multiple regression analysis based approach for condition monitoring of industrial rotating machinery using multi-sensors”. In 2019 Prognostics and System Health Management Conference (PHM-Qingdao) (pp. 1-5). IEEE. 2019, October. doi: 10.1109/PHM-Qingdao46334.2019.8942902
C. L. Sandoval-Rodriguez, J. A. Villabona, C. G. Cárdenas-Arias, , A. D. Rincón-Quintero, & B. E. Tarazona-Romero, “Characterization of the mechanical vibration signals associated with unbalance and misalignment in rotating machines, using the cepstrum transformation and the principal component analysis”. In IOP Conference Series: Materials Science and Engineering (Vol. 844, No. 1, p. 012057). IOP Publishing. 2020 May, doi: 10.1088/1757-899X/844/1/012057
C.L. Sandoval-Rodriguez, B.E. Tarazona-Romero, O. Lengerke-Perez, C.G. Cárdenas-Arias, D.C. Dulcey Diaz, O.A. Acosta Cárdenas “Descriptive Study of a Rotary Machine Affected by Misalignment and Imbalance Applying the Wavelet Transform”. In: Botto Tobar M., Cruz H., Díaz Cadena A. (eds) Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2020. Lecture Notes in Electrical Engineering, vol 763. Springer, Cham. 2021 doi:10.1007/978-3-030-72212-8_17
P. Lipinski, , E. Brzychczy, , & R. Zimroz. “Decision tree-based classification for Planetary Gearboxes’ condition monitoring with the use of vibration data in multidimensional symptom space”. Sensors, 20(21), 5979. 2020. doi:10.3390/s20215979.
A. V. Jaimes, J.Carrillo, & L. A. V. Carvajal. “Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental”. INGE CUC, 14(1), 52-65., 2018. doi: 10.17981/ingecuc.14.1.2018.05
Y. C.Liu-Kuan, , & P. Agüero-Barrantes. “Introducción al monitoreo de la condición estructural de puentes” . 2017 consultada en 2021..URL: https://www.lanamme.ucr.ac.cr/repositorio/handle/50625112500/902
P. Cawley, “Structural health monitoring: Closing the gap between research and industrial deployment”. Structural Health Monitoring, 17(5), 1225-1244 , 2018..doi: 10.1177/1475921717750047
C. Cárdenas, C. Sandoval, J. & Gómez. “Implementación de una mesa vibratoria triaxial neumática para el análisis de estructuras y el movimiento sísmico”. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 2(32), 98-103. 2018. doi: 16927257.v32.n32.2018.3032
U. Nawrot, T. Geernaert, B. De Pauw, D. Anastasopoulos, E. Reynders, G. De Roeck & F. Berghmans, “Mechanical strain-amplifying transducer for fiber Bragg grating sensors with applications in structural health monitoring”. In 2017 25th Optical Fiber Sensors Conference (OFS) (pp. 1-4). IEEE. 2017, April. doi: 10.1117/12.2264614
W. S. Na, & J.Baek. “A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures”. Sensors, 18(5), 1307. (2018).doi: 10.3390/s18051307
M. M. Uddin, N. Devang, A. K. Azad & V. Demir. “Remote Structural Health Monitoring for Bridges. In International Conference on Remote Engineering and Virtual Instrumentation “(pp. 363-377). Springer, Cham 2018, March. doi: 10.1007/978-3-319-95678-7_41
J. Zhang, G. Y. Tian, A. M. Marindra, A. I. Sunny, & A. B. Zhao. “A review of passive RFID tag antenna-based sensors and systems for structural health monitoring applications”. Sensors, 17(2), 265. 2017doi: 10.3390/s17020265
B. Tarazona, & C. Sandoval. “Evaluación de discontinuidades tipo grietas y fisuras en estructuras de hormigón empleando un analizador de vibraciones y procesamiento digital de imágenes”. Entre Ciencia e Ingeniería, 85-94. 2019. doi: 10.31908/19098367.4018
B. E. Romero-Tarazona, C. L. Rodriguez-Sandoval, J. G. Villabona-Ascanio, &, A. D. Rincón-Quintero. “Development of an artificial vision system that allows non-destructive testing on flat concrete slabs for surface crack detection by processing of digital images in MATLAB”. In IOP Conference Series: Materials Science and Engineering (Vol. 844, No. 1, p. 012058). IOP Publishing. 2020, May. doi: 10.1088/1757-899x/844/1/012058
S. Roy, T. Bose, & K. Debnath. “Analytical and numerical study of local defect resonance frequencies in fibre metal laminates”. In 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE) (pp. 1-5). IEEE. 2018, June. doi: 10.1109/EPETSG.2018.8658968
B. E. Tarazona, C. L. Sandoval, C. G. C. Arias, J. G. Ascanio & J. J. Valencia.” Detection of structural alterations in metal bodies: An approximation using Fourier transform and principal component analysis (PCA)”. Scientia et Technica, 25(2), 255-260. 2020 doi 10.22517/23447214.23501
Y. Pan, , & L.Zhang. “ Roles of artificial intelligence in construction engineering and management: A critical review and future trends”. Automation in Construction, 122, 103517 2021.doi: 10.1016/j.autcon.2020.103517
L. Barbini, M. Eltabach & J Du Bois. “Application of cepstrum prewhitening on non-stationary signals. In International Congress on Technical Diagnostics and Condition Monitoring of Machinery in Non-Stationary Operations” 2016, September.
DOI: http://dx.doi.org/10.21533/pen.v9i4.1994
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Camilo Leonardo Sandoval Rodriguez

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2303-4521
Digital Object Identifier DOI: 10.21533/pen
This work is licensed under a Creative Commons Attribution 4.0 International License