Design and construction of a solar tracking system for Linear Fresnel Concentrator

Brayan Eduardo Tarazona Romero, Alvaro Campos Celador, Camilo Leonardo Sandoval Rodriguez, Javier Gonzalo Ascanio Villabona, Arly Dario Rincon Quintero


An open circuit solar tracking system has been designed, manufactured, simulated and implemented for a handcrafted prototype of a small scale linear Fresnel reflector with a single axis of motion. The electronic control system is governed by an Arduino UNO R3 board and two main auxiliary systems; a Microstep Driver TB6600 and an RTC DS1302 module. Further, a mechanism was implemented that joins the reflectors to a stepper motor that executes a single movement per sequence, to move the set of reflector mirrors that make up the reflection system of the device. The positioning angles of the reflectors determined by the control algorithm models for solar tracking, allowed to feed the TONATIUH software to evaluate the path of the solar rays through the 3D modeling of the Linear Fresnel reflector on a real scale. The software was designed to follow the path of the sun by means of astronomical equations. In this way, the mirrors of the Linear Fresnel reflector can follow the solar path on a single axis from 7 am to 5 pm, making changes in the position of each element in 15-minute intervals. The percentage of position deviation of the reflectors does not exceed 1% between the location of the full-scale system mirrors and the position angles provided by the control algorithm. The efficiency of the implemented automatic solar tracking system increased by more than 50% compared to the manual tracking system.


Control Systems, Control Algorithm, Linear Fresnel Reflector, Solar Collector, Solar Concentration

Full Text:



G. Díaz Cordero, “El cambio climático”, Instituto Tecnológico de Santo Domingo, mar. 2012, Consultado: feb. 26, 2021. [En línea]. Disponible en:

N. Kincaid, G. Mungas, N. Kramer, y G. Zhu, “Sensitivity analysis on optical performance of a novel linear Fresnel concentrating solar power collector”, Solar Energy, vol. 180, pp. 383–390, mar. 2019, doi: 10.1016/j.solener.2019.01.054.

K. Lovegrove y W. S. Csiro, “1 - Introduction to concentrating solar power (CSP) technology”, en Concentrating Solar Power Technology, K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2012, pp. 3–15. doi: 10.1533/9780857096173.1.3.

K. Lovegrove y J. Pye, “2 - Fundamental principles of concentrating solar power (CSP) systems”, en Concentrating Solar Power Technology, K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2012, pp. 16–67. doi: 10.1533/9780857096173.1.16.

R. Pitz-Paal, “19 - Concentrating Solar Power”, en Future Energy (Third Edition), T. M. Letcher, Ed. Elsevier, 2020, pp. 413–430. doi: 10.1016/B978-0-08-102886-5.00019-0.

H. Price et al., “Chapter 20 - Concentrating solar power best practices”, en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 725–757. doi: 10.1016/B978-0-12-819970-1.00020-7.

P. Heller, “1 - Introduction to CSP systems and performance”, en The Performance of Concentrated Solar Power (CSP) Systems, P. Heller, Ed. Woodhead Publishing, 2017, pp. 1–29. doi: 10.1016/B978-0-08-100447-0.00001-8.

W. J. Platzer, D. Mills, y W. Gardner, “Chapter 6 - Linear Fresnel Collector (LFC) solar thermal technology”, en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 165–217. doi: 10.1016/B978-0-12-819970-1.00006-2.

M. Collares-Pereira, D. Canavarro, y J. Chaves, “3 - Improved design for linear Fresnel reflector systems”, en Advances in Concentrating Solar Thermal Research and Technology, M. J. Blanco y L. R. Santigosa, Eds. Woodhead Publishing, 2017, pp. 45–55. doi: 10.1016/B978-0-08-100516-3.00003-4.

A. Vouros, E. Mathioulakis, E. Papanicolaou, y V. Belessiotis, “Performance evaluation of a linear Fresnel collector with catoptric subsets”, Renewable Energy, vol. 156, pp. 68–83, ago. 2020, doi: 10.1016/j.renene.2020.04.062.

M. Cagnoli, D. Mazzei, M. Procopio, V. Russo, L. Savoldi, y R. Zanino, “Analysis of the performance of linear Fresnel collectors: Encapsulated vs. evacuated tubes”, Solar Energy, vol. 164, pp. 119–138, abr. 2018, doi: 10.1016/j.solener.2018.02.037.

M. J. Montes, R. Abbas, M. Muñoz, J. Muñoz-Antón, y J. M. Martínez-Val, “Advances in the linear Fresnel single-tube receivers: Hybrid loops with non-evacuated and evacuated receivers”, Energy Conversion and Management, vol. 149, pp. 318–333, oct. 2017, doi: 10.1016/j.enconman.2017.07.031.

G. Barone, A. Buonomano, C. Forzano, y A. Palombo, “Chapter 6 - Solar thermal collectors”, en Solar Hydrogen Production, F. Calise, M. D. D’Accadia, M. Santarelli, A. Lanzini, y D. Ferrero, Eds. Academic Press, 2019, pp. 151–178. doi: 10.1016/B978-0-12-814853-2.00006-0.

J. Ma, C.-L. Wang, Y. Zhou, y R.-D. Wang, “Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector”, Renewable Energy, vol. 171, pp. 141–148, jun. 2021, doi: 10.1016/j.renene.2021.02.100.

M. Z. Yakut, A. Karabuğa, A. Kabul, y R. Selbaş, “Chapter 2.17 - Design, Energy and Exergy Analyses of Linear Fresnel Reflector”, en Exergetic, Energetic and Environmental Dimensions, I. Dincer, C. O. Colpan, y O. Kizilkan, Eds. Academic Press, 2018, pp. 523–532. doi: 10.1016/B978-0-12-813734-5.00029-9.

A. Rovira, R. Barbero, M. J. Montes, R. Abbas, y F. Varela, “Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems”, Applied Energy, vol. 162, pp. 990–1000, ene. 2016, doi: 10.1016/j.apenergy.2015.11.001.

A. Sebastián, R. Abbas, M. Valdés, y J. Casanova, “Innovative thermal storage strategies for Fresnel-based concentrating solar plants with East-West orientation”, Applied Energy, vol. 230, pp. 983–995, nov. 2018, doi: 10.1016/j.apenergy.2018.09.034.

P. Dellicompagni y J. Franco, “Potential uses of a prototype linear Fresnel concentration system”, Renewable Energy, vol. 136, pp. 1044–1054, jun. 2019, doi: 10.1016/j.renene.2018.10.005.


B. E. Tarazona-Romero, Á. Campos-Celador, Y. A. Muñoz-Maldonado, C. L. Sandoval-Rodríguez, y J. G. Ascanio-Villabona, “Prototype of lineal solar collector Fresnel: Artisanal system for the production of hot water and/or water vapour”, Visión electrónica, vol. 14, núm. 1, Art. núm. 1, ene. 2020, doi: 10.14483/22484728.16013.

A. Barbón, C. Bayón-Cueli, L. Bayón, y P. F. Ayuso, “Influence of solar tracking error on the performance of a small-scale linear Fresnel reflector”, Renewable Energy, vol. 162, pp. 43–54, dic. 2020, doi: 10.1016/j.renene.2020.07.132.

A. Barbón, N. Barbón, L. Bayón, y J. A. Otero, “Optimization of the length and position of the absorber tube in small-scale Linear Fresnel Concentrators”, Renewable Energy, vol. 99, pp. 986–995, dic. 2016, doi: 10.1016/j.renene.2016.07.070.

M. Hack, G. Zhu, y T. Wendelin, “Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs”, Applied Energy, vol. 208, pp. 1441–1451, dic. 2017, doi: 10.1016/j.apenergy.2017.09.009.

M. El Ydrissi, H. Ghennioui, E. G. Bennouna, y A. Farid, “A review of optical errors and available applications of deflectometry technique in solar thermal power applications”, Renewable and Sustainable Energy Reviews, vol. 116, p. 109438, dic. 2019, doi: 10.1016/j.rser.2019.109438.

J. A. Duffie y W. A. Beckman, Solar Engineering of Thermal Processes. John Wiley & Sons, 2013.

R. Grena y P. Tarquini, “Solar linear Fresnel collector using molten nitrates as heat transfer fluid”, Energy, vol. 36, núm. 2, pp. 1048–1056, feb. 2011, doi: 10.1016/

J. Zheng, H. Bie, D. Xu, C. Lei, y X. Zhang, “Joint iterative source-channel decoding of three correlated sources”, en 2014 4th IEEE International Conference on Network Infrastructure and Digital Content, sep. 2014, pp. 6–10. doi: 10.1109/ICNIDC.2014.7000255.

M. A. Moghimi, K. J. Craig, y J. P. Meyer, “A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method”, Solar Energy, vol. 116, pp. 407–427, jun. 2015, doi: 10.1016/j.solener.2015.04.014.

M. Hongn, S. F. Larsen, M. Gea, y M. Altamirano, “Least square based method for the estimation of the optical end loss of linear Fresnel concentrators”, Solar Energy, vol. 111, pp. 264–276, ene. 2015, doi: 10.1016/j.solener.2014.10.042.

D. Jafrancesco et al., “Optical simulation of a central receiver system: Comparison of different software tools”, Renewable and Sustainable Energy Reviews, vol. 94, pp. 792–803, oct. 2018, doi: 10.1016/j.rser.2018.06.028.

O. R. Delgado Carreño, “METODOLOGÍA PARA LA EVALUACIÓN DEL DESEMPEÑO ANUAL DE SISTEMAS DE CONCENTRACIÓN DE ENERGÍA SOLAR”, Posgrado, Universidad Autonoma de nuevo leon, Mexico, 2019. [En línea]. Disponible en:

Z. Said, M. Ghodbane, A. A. Hachicha, y B. Boumeddane, “Optical performance assessment of a small experimental prototype of linear Fresnel reflector”, Case Studies in Thermal Engineering, vol. 16, p. 100541, dic. 2019, doi: 10.1016/j.csite.2019.100541.

E. Bellos y C. Tzivanidis, “Development of analytical expressions for the incident angle modifiers of a linear Fresnel reflector”, Solar Energy, vol. 173, pp. 769–779, oct. 2018, doi: 10.1016/j.solener.2018.08.019.

M. Babu, A. M. Kuzmin, P. Sekhar Babu, S. S. Raj, y C. Thiruvasagam, “Angular error correction and performance analysis of linear Fresnel reflector solar concentrating system with varying width mirror reflector”, Materials Today: Proceedings, dic. 2020, doi: 10.1016/j.matpr.2020.10.700.

A. Barbón, J. A. Fernández-Rubiera, L. Martínez-Valledor, A. Pérez-Fernández, y L. Bayón, “Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements”, Applied Energy, vol. 285, p. 116477, mar. 2021, doi: 10.1016/j.apenergy.2021.116477.

B. E. Tarazona-Romero, A. Campos-Celador, Y. A. Muñoz-Maldonado, J. G. Ascanio-Villabona, M. A. Duran-Sarmiento, y A. D. Rincón-Quintero, “Development of a Fresnel Artisanal System for the Production of Hot Water or Steam”, en Recent Advances in Electrical Engineering, Electronics and Energy, oct. 2020, pp. 196–209. doi: 10.1007/978-3-030-72212-8_15.



  • There are currently no refbacks.

Copyright (c) 2021 Brayan Eduardo Tarazona Romero

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License