Multiwall carbon nanotube reinforced HA/HDPE biocomposite for bone reconstruction

Ali A. Al-allaq, Jenan S. Kashan, Mohamed T. El-Wakad, Ahmed M. Soliman

Abstract


The healing of bone fractures naturally occurs without surgical intervention. Some damage and fractures in bone tissue are complex and leave remnant deformation, and this requires the use of bone replacement material. Hydroxyapatite (HA) is the main element of the bone mineral form and consider as a bioactive material which supports bone growth. Nevertheless, the HA has poor mechanical properties, such as low tensile strength. Thus the applications in bone replacement have been limited, especially in high load-bearing applications. A Carbone nanotube has newly obtained considerable concern because of their mechanical properties, potentially enhancing the bone implant's clinical efficiency. This study attempted to explain the effect of adding Multi-walled carbon nanotubes MWCNT Nanoparticles to the HDPE/HA bio-composites. Two groups of the composites samples were produced 20HA/80 HDPE and 40 HA/ 60 HDPE with adding (0.6, 1, 1.4, 2) % weights of (MWCNT) to each group. The composites were fabricated using a hot pressing technique with various pressing pressures (29, 57, 86, and 114 Mpa) at a compounding temperature of 150 C° and a holding time of 15 minutes. To evaluate samples' characteristics and performance, X-ray powder diffraction (XRD), surface topography by Field Emission Scanning Electron Microscopy (FE-SEM), tensile strength and, microhardness test were investigated. The results showed that the hybrid bio-composites demonstrated excellent structural integrity, homogeneous with the fibrous structure, and improved mechanical properties. When increasing in MWNT additions and increasing hot-press pressure, enhancing the composites' fracture strength and microhardness is beneficial. The excellent properties of hybrids bio-composite (HA/HDPE/MWCNT) samples for homogeneous fibrous structure and high mechanical properties could be applied in bone tissue engineering for bone reconstruction.

Full Text:

PDF


DOI: http://dx.doi.org/10.21533/pen.v9i2.1946

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ali A. Al-allaq, Jenan S. Kashan, Mohamed T. El-Wakad, Ahmed M. Soliman

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License