Raman and FT-IR Spectra, DFT and SQMFF calculations for N,N-Dimethylaniline

Berna Çatıkkaş


Raman and FT-IR spectra of N,N-Dimethylaniline (DMA) molecule, which is a monoazo disperse dye, were recorded in the regions of 0 to 2085 cm−1 (Raman) and 350-4000 cm-1 (FT-IR). Vibrational frequencies calculation and molecular electronic potential surface have been computed by using density functional B3LYP method with the 6-31+G(d,p) set for the ground state geometry of the title molecule. Total potential energy distributions (TED) was obtained with Scaled Quantum Mechanical calculations to make the fundamental assignment. Assigned fundamental modes of DMA molecule were compared with the previous reported experimental values.


Monoazo disperse dye, Infrared and Raman Spectroscopy, Scaled Quantum Mechanical Force Field (SQMFF)

Full Text:



M. Neamtu, A. Yediler, I. Siminiceanu, M. Macoveanu, and A. Kettrup, “Decolorization of disperse red 354 azo dye in water by several oxidation processes - a comparative study,” Dye. Pigment., vol. 60, no. 1, pp. 61–68, 2004.

A. G. Tskhovrebov, L. C. E. Naested, E. Solari, R. Scopelliti, and K. Severin, “Synthesis of azoimidazolium dyes with nitrous oxide,” Angew. Chemie - Int. Ed., vol. 54, no. 4, 2015.

H. Valizadeh and A. Shomali, “A new nitrite ionic liquid (IL-ONO) as a nitrosonium source for the efficient diazotization of aniline derivatives and in-situ synthesis of azo dyes,” Dye. Pigment., vol. 92, no. 3, pp. 1138–1143, 2012.

A. Matei, C. Constantinescu, B. Mitu, M. Filipescu, V. Ion, I. Ionita, S. Brajnicov, A. P. Alloncle, P. Delaporte, A. Emandi, and M. Dinescu, “Laser printing of azo-derivative thin films for non-linear optical applications,” Appl. Surf. Sci., vol. 336, pp. 200–205, 2015.

S. Shahab, F. H. Hajikolaee, L. Filippovich, M. Darroudi, V. A. Loiko, R. Kumar, and M. Y. Borzehandani, “Molecular structure and UV–Vis spectral analysis of new synthesized azo dyes for application in polarizing films,” Dye. Pigment., vol. 129, pp. 9–17, 2016.

Ö. Arslan, E. Yalçin, N. Seferoğlu, M. Yaman, and Z. Seferoğlu, “Molecular Structure Analysis and Spectroscopic Properties of Monoazo Disperse Dye From N , N -Dimethylaniline,” vol. 30, no. 1, pp. 175–189, 2017.

C. Y. Legault, “CYLview, 1.0b,” Univ. Sherbrooke, p. http://www.cylview.org, 2009.

M. Suhasini, E. Sailatha, S. Gunasekaran, and G. R. Ramkumaar, “Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on Lornoxicam by density functional theory,” J. Mol. Struct., vol. 1100, pp. 116–128, Nov. 2015.

M. J. et al Frisch, “Gaussian 09, Revision A.02,” Gaussian 09, Revision A.02. 2009.

G. Fogarasi, X. Zhou, P. W. Taylor, and P. Pulay, “The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces,” J. Am. Chem. Soc., vol. 114, no. 21, pp. 8191–8201, 1992.

P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, and A. Vargha, “Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene,” J. Am. Chem. Soc., vol. 105, no. 24, pp. 7037–7047, 1983.

P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, “Systematic ab Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives,” J. Am. Chem. Soc., vol. 101, no. 10, pp. 2550–2560, 1979.

P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, and A. Varghale, “Combination of Theoretical ab Initio and Experimental Information To Obtain Reliable Harmonic Force Constants . Scaled Quantum Mechanical ( SQM ) Force Fields for,” J. Am. Chem. Soc., vol. 105, no. Figure 3, pp. 7037–7047, 1983.

J. Baker, A. A. Jarzecki, and P. Pulay, “Direct Scaling of Primitive Valence Force Constants: An Alternative Approach to Scaled Quantum Mechanical Force Fields,” J. Phys. Chem. A, vol. 102, no. 8, pp. 1412–1424, 1998.

“Parallel Quantum Solutions, SQM.” Green Acres Road, Suite A, Fayetteville, AR 72703, 2013.

P. Politzer, P. R. Laurence, and K. Jayasuriya, “Molecular electrostatic potentials: An effective tool for the elucidation of biochemical phenomena,” Environ. Health Perspect., vol. VOL. 61, no. 1, pp. 191–202, 1985.

P. Politzer and J. S. Murray, “The fundamental nature and role of the electrostatic potential in atoms and molecules,” Theor. Chem. Acc., vol. 108, pp. 134–142, 2002.

G. L. Hofacker, “Peter Politzer und Donald G. Truhlar: Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York und London 1981. 472 Seiten, Preis: $ 55.-,” Berichte der Bunsengesellschaft für Phys. Chemie, vol. 86, no. 9, pp. 872–873, Sep. 1982.

G. Socrates, Infrared and Raman characteristic group frequencies. 2004.

B. Çatıkkaş, E. Aktan, and Z. Seferoǧlu, “DFT, FT-Raman, FTIR, NMR, and UV-Vis studies of a hetarylazo indole dye,” Int. J. Quantum Chem., vol. 113, no. 5, pp. 683–689, Mar. 2013.

E. Aktan, B. Babür, Z. Seferoğlu, T. Hökelek, and E. Şahin, “Synthesis and structure of a novel hetarylazoindole dye studied by X-ray diffraction, FT-IR, FT-Raman, UV–vis, NMR spectra and DFT calculations,” J. Mol. Struct., vol. 1002, no. 1–3, pp. 113–120, Sep. 2011.

DOI: http://dx.doi.org/10.21533/pen.v5i2.139


  • There are currently no refbacks.

Copyright (c) 2017 Periodicals of Engineering and Natural Sciences (PEN)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2303-4521

Digital Object Identifier DOI: 10.21533/pen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License