Operational stability and degradation of organic solar cells
Abstract
Keywords
Full Text:
PDFReferences
Cao, H.Q., et al., Recent progress in degradation and stabilization of organic solar cells. Journal of Power Sources, 2014. 264: p. 168-183.
Yu, G., et al., Polymer Photovoltaic Cells - Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995. 270(5243): p. 1789-1791.
You, J.B., et al., A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications, 2013. 4.
Jorgensen, M., et al., Stability of Polymer Solar Cells. Advanced Materials, 2012. 24(5): p. 580-612.
Manceau, M., et al., Photochemical stability of pi-conjugated polymers for polymer solar cells: a rule of thumb. Journal of Materials Chemistry, 2011. 21(12): p. 4132-4141.
Wang, F.Z., et al., Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015. 64(3).
Bakulin, A.A., et al., The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors. Science, 2012. 335(6074): p. 1340-1344.
Group, T.R. and T.U.o.S. California. 2017 [cited 2017 23 May]; Available from: http://met.usc.edu/projects/solarcells.php.
Schilinsky, P., et al., Simulation of light intensity dependent current characteristics of polymer solar cells. Journal of Applied Physics, 2004. 95(5): p. 2816-2819.
Qi, B. and J. Wang, Fill factor in organic solar cells. Phys Chem Chem Phys, 2013. 15(23): p. 8972-82.
Qi, B.Y. and J.Z. Wang, Open-circuit voltage in organic solar cells. Journal of Materials Chemistry, 2012. 22(46): p. 24315-24325.
Scharber, M.C., et al., Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Advanced Materials, 2006. 18(6): p. 789-+.
Wikipedia. 2017 [cited 2017 23 May]; Available from: https://en.wikipedia.org/wiki/PEDOT:PSS.
Energy, S. 2017 [cited 2017 23 May]; Available from: http://solarmer.com/aboutus/.
Song, Q.L., et al., Role of buffer in organic solar cells using C-60 as an acceptor. Applied Physics Letters, 2007. 90(7).
Wahlstrom, E., et al., Electron transfer-induced dynamics of oxygen molecules on the TiO2(110) surface. Science, 2004. 303(5657): p. 511-513.
Cuentas-Gallegos, A., et al., Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates. Electrochemistry Communications, 2007. 9(8): p. 2088-2092.
Vaillant, J., et al., Chemical synthesis of hybrid materials based on PAni and PEDOT with polyoxometalates for electrochemical supercapacitors. Progress in Solid State Chemistry, 2006. 34(2-4): p. 147-159.
Krebs, F.C., T. Tromholt, and M. Jorgensen, Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale, 2010. 2(6): p. 873-886.
Xi, X., et al., A comparative study on the performances of small molecule organic solar cells based on CuPc/C-60 and CuPc/C-70. Solar Energy Materials and Solar Cells, 2010. 94(12): p. 2435-2441.
Li, G., et al., Efficient inverted polymer solar cells. Applied Physics Letters, 2006. 88(25).
Sondergaard, R., et al., Roll-to-roll fabrication of polymer solar cells. Materials Today, 2012. 15(1-2): p. 36-49.
Norrman, K., et al., Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell. Journal of the American Chemical Society, 2010. 132(47): p. 16883-16892.
Wang, M.L., et al., Small-molecular organic solar cells with C-60/Al composite anode. Organic Electronics, 2007. 8(4): p. 445-449.
Zhou, Y.H., et al., A Universal Method to Produce Low-Work Function Electrodes for Organic Electronics. Science, 2012. 336(6079): p. 327-332.
Rowell, M.W., et al., Organic solar cells with carbon nanotube network electrodes. Applied Physics Letters, 2006. 88(23).
Lee, J.U., et al., Degradation and stability of polymer-based solar cells. Journal of Materials Chemistry, 2012. 22(46): p. 24265-24283.
DOI: http://dx.doi.org/10.21533/pen.v5i2.105
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Periodicals of Engineering and Natural Sciences (PEN)

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2303-4521
Digital Object Identifier DOI: 10.21533/pen
This work is licensed under a Creative Commons Attribution 4.0 International License