Multi-objective artificial bee colony algorithm to estimate transformer equivalent circuit parameters
Abstract
Keywords
Full Text:
PDFReferences
K. Deb, Multi-Objective optimization using evolutionary algorithms, John Wiley & Sons, Inc. New York, NY, USA, 2001.
T. Murata, H. Ishibuchi, and H. Tanaka, “Multi-objective genetic algorithm and its applications to flowshop scheduling,” Computers & Industrial Engineering, vol. 30, pp. 957-968, 1996.
H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining,” Fuzzy sets and systems, vol. 141(1), pp. 59-88, 2004.
G. Zhang, X. Shao, P. Li, and L. Gao, “An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem,” Computers & Industrial Engineering, vol. 56 (4), pp. 1309-1318, 2009.
S. Chamaani, S. A. Mirtaheri, M. Teshnehlab, and M. A. Shooredeli, “Modified multi-objective particle swarm optimization for electromagnetic absorber design,” In Applied Electromagnetics, 2007. APACE 2007. Asia-Pacific Conference on IEEE, pp. 1-5, December, 2007.
D. Meister and M. A. G. de Oliveira, "The use of the least squares method to estimate the model parameters of a transformer," 2009 10th International Conference on Electrical Power Quality and Utilisation, Lodz, doi: 10.1109/EPQU.2009.5318853, pp. 1-6, 2009.
S. A. Soliman, R. A. Alammari, and M. A. Mostafa, "On-line estimation of transformer model parameters," 2004 Large Engineering Systems Conference on Power Engineering (IEEE Cat. No.04EX819), doi: 10.1109/LESCPE.2004.1356295, pp. 170-178, 2004.
S. H. Thilagar and G. S. Rao, "Parameter estimation of three-winding transformers using genetic algorithm," Eng. Appl. Artificial Intell., vol. 15, no. 5, pp. 429-437, Sep. 2002.
K. Deb, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions On Evolutionary Computation, vol. 6, pp. 182-197, 2002.
A. H. F. Dias and J. A. de Vasconcelos, “Multiobjective genetic algorithms applied to solved optimization problems,” IEEE Transactions On Magnetics, vol. 38, no. 2, pp. 1133-1136, Mar. 2002.
A. Osyczka. “Evolutionary algorithms for single and multicriteria design optimization,” New York: Physica Verlag., 2002.
W. Zou, Y. Zhu, H. Chen, and B. Zhang, “Solving multiobjective optimization problems using artificial bee colony algorithm,” Discrete Dynamics in Nature and Society, vol. 2011, 37 pages, 2011.
J. D. Knowles and D. W. Corne, “Approximating the nondominated front using the pareto archived evolution strategy,” Evolutionary Computation, vol. 8(2), pp. 149-172, 2000.
C. A. Coello and G. T. Pulido, “A micro-genetic algorithm for multiobjective optimization,” in Proc. EMO 2001, pp. 126-140, Mar. 2001.
D. Karaboga, An Idea Based On Honey Bee Swarm for Numerical Optimization, Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
S. J. Chapman, Electric Machinery Fundamentals, McGraw-Hill, New York, 2003.
DOI: http://dx.doi.org/10.21533/pen.v5i3.103
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Periodicals of Engineering and Natural Sciences (PEN)

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2303-4521
Digital Object Identifier DOI: 10.21533/pen
This work is licensed under a Creative Commons Attribution 4.0 International License