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 The excellent mechanical properties of powder metallurgy superalloys 

strongly depend on the microstructure, grain size, morphology, and size 

distribution of the γ' precipitates. In this study, the effects of cooling rate on 

strength and microstructure of powder metallurgy superalloys were 

investigated. Articles were reviewed about this topic and they all were 

evaluated. Different types of powder metallurgy superalloys such as 

FGH4096, U720LI, UDIMET 500, MAR-M247, K465, IN738LC, 

Rene88DT, CM247LC and K5 were selected for this study. These materials 

were tested in different parameters (temperature and time) and different 

cooling rates were applied. Test results showed that cooling rate has 

considerable effects on strength and microstructure of powder metallurgy 

superalloys. It was observed that the strength increased by the increment of 

cooling rate. Also, almost homogeneous microstructure was obtained at high 

cooling rate. 
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1. Introduction 

The excellent high temperature performance of a nickel-based powder metallurgy alloy depends most often on 

strengthening γ' precipitates. To increase the strength and flexibility of the alloy by heat treatment it is 

necessary to control the amount, size, morphology and distribution of the γ' phase [1]. In general, the volume 

percentage of the γ' phase is about 35% to 60% in the high-alloy superalloy. The ratio γc' of the cooling γ' 

precipitates formed during the cooling process exceeds 60%, and therefore examination of γc' precipitation 

behaviors at various cooling conditions is one of the important baseline investigations to increase the 

temperature ability. [2]. The grain boundaries are weak bonds in the superalloys and easily become rupture at 

high operating temperatures due to defects in the microstructure. Some carbides and γ' particles as boundary 

precipitants have significant effects on the high temperature creep resistance and plasticity of nickel-based 

superalloys. For this reason, examining the morphology and component of the micro-phase near the grain 

boundaries is a very important issue to strengthen the grain boundaries [2]. 

2. Discussion  

Tian and et al. examined the effect of cooling rate on cooling γ' precipitation behavior in nickel-based powder 

metallurgy superalloy (FGH4096). Chemical composition of the alloy is given in Table 1. The samples were 

dissolved at 1150 ºC for 5 minutes and then cooled to room temperature at different controlled cooling rates. 
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Experimental conditions are shown in Table 2. The cooling rate plays a crucial role in controlling the amount, 

size, morphology and distribution of cooling γ' precipitates. The mean sizes of the secondary and tertiary γ' 

precipitates were inversely correlated with the cooling rate. The shape of the secondary γ' precipitates within 

grain changes from butterfly like to spherical with cooling rate. However, regardless of the cooling rate, all 

the tertiary γ' precipitates formed are spherical. The cooling rate has a significant effect on the precipitation 

behavior of the γ' phase at the grain boundaries and the apparent extent of the grain boundaries; the higher the 

cooling rate, the narrower the visibility of the grain boundaries [2]. 

Mao et al. investigated cooling precipitation and strengthening in powder metallurgy superalloy. The excellent 

mechanical properties of powder metallurgy superalloys depend on the microstructure such as grain size, 

morphology and size distribution. The microstructure is determined in turn by heat treatment quenching and 

then aging. Experimental conditions are shown in Table 2. To investigate the effect of quenching, two types of 

quenching methods (continuous cooling and interrupted cooling) were used to produce different cooled 

microstructures in the UDIMET 720Li (U720LI) alloy. Chemical composition of the alloy is given in Table 1. 

In continuous cooling tests, the tensile strength increased linearly with the cooling rate. Interrupted cooling 

tests have shown that γ' growth is a linear function of decreasing temperature for a given cooling rate. A non-

monotonic decay of the tensile strength against the interrupt temperature has been discovered [1]. Tian et al. 

applied two cooling schemes (continuous cooling and interrupted cooling tests) to investigate the cooling γ' 

precipitation behavior in the powder metallurgy superalloy FGH4096. Chemical composition of the alloy is 

given in Table 1. The maximum tensile strength of the samples was tested under various cooling conditions. 

Experimental conditions are shown in Table 2. The average sizes of the secondary and tertiary γ-precipitates 

were obtained between the strength and the cooling rate. The results show that there is an opposite correlated 

between the average sizes. Interrupted cooling tests show that the mean size of secondary γ' precipitates 

increases as a linear function of the cutting temperature for a constant cooling rate of 24 ºC/min. The ultimate 

tensile strength of the alloy increases with increasing cooling rate, but it first decreases and increases with 

decreasing temperature caused by the third γ' precipitate [3]. 

Table 1: Chemical composition of alloys (wt %) 

 
FGH409

6 

U720L

I 

UDIME

T 500 

MAR-

M247 
K465 

IN738L

C 

Rene88D

T 

CM247L

C 
K5 

Ni Balance Balance Balance 

Balanc

e 

Balanc

e Balance 55.63 Balance 

Balanc

e 

Cr 16.04 16.35 17.9 4.43 8.30 16.49 18.02 8.09 10.3 

Co 12.70 14.75 17.2 9.08 9.45 8.72 13.00 9.35 10.2 

W 3.98 1.3 - 7.62 9.85 3.36 1.21 9.41 5.1 

M

o 3.84 3.02 4.00 2.02 1.78 1.90 2.48 0.52 3.96 

Nb 0.72 - - 1.00 0.90 0.88 0.46 - - 

Al 2.18 2.46 - 5.72 5.56 3.26 4.45 5.51 5.54 

Ti 3.71 4.99 3.00 - 2.38 3.23 4.74 0.82 2.62 

C 0.028 0.025 0.11 0.012 0.14 0.06 - 0.075 0.137 

Zr 0.04 0.035 - - - 0.04 - - - 

B 0.0095 - - - - 0.08 - - - 

N 0.0022 - - - - - - - - 

S - 0.005 - - - - - - - 

Fe - 0.06 2.1 - - - - - - 

Re - - - 2.02 - - - - - 

Ta - - - 6.74 - 1.63 - 3.24 - 

Hf - - - 0.10 - - - 1.53 - 
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Table 2: Experimental conditions of superalloys 

Alloys 
Temperature 

(ºC) 

Time 

(min) 
Cooling Rates (ºC/min) 

FGH4096 1150 5 24 84 258 648 
  

U720LI 1175 5 11 27 55 110 167 800 

UDIMET500 1080 240 3.85 35.4 49.8 90.35 129.5 186 

IN738LC 1120 120 36 48 66 - - - 

Rene88DT 1124 240 24 280 300 
 

- - 

IN738LC 1120 120 11 72 98 247 368 - 

CM247LC 1230 120 81 125 168 - - - 

Sajjadi et al. investigated the effect of cooling rate on microstructure and mechanical properties. For this 

purpose, after making a partial solution for 4 hours at 1080 ºC on the samples of UDIMET 500. Experimental 

conditions are shown in Table 2. Chemical composition of the alloy is given in Table 1. The microstructures 

of the samples were examined using optical and electron microscopy. As a result, it was determined that the 

volume of γ' precipitates decreased with increasing cooling rate. Thus, as the cooling rate increases, 

homogeneity is observed in the microstructure. It is observed that the increased cooling rate increases the 

strength but decreases the ductility [4]. Zhang et al. investigated the development of solidification cooling rate 

microstructures in Ni-based superalloy using conventional casting, injection casting and melt bending 

methods. MAR-M247 nickel-based superalloy was selected as material. Chemical composition of the alloy is 

given in Table 1. The sample was dissolved at a temperature of 1273 K for 5 min. Experimental conditions are 

shown in Table 3. As a result, irregular structures decreased as the cooling rate increased. It has been found 

that the interspaces of γ' precipitates in the cell structure reduced [5]. 

Table 3: Experimental Conditions of superalloys 

Alloys 
Temperature 

(K) 

Time 

(min) 
Cooling Rates (K/min) 

MAR-M247 1273 5 0.72 2.1 9 39 75 870 

K465 1483 240 12 120 612 - - - 

MAR-M247 1633 5 15 60 300 600 - - 

Pei et al. investigated the effect of cooling rate on the microstructure and mechanical properties of K465 

superalloy. The chemical composition of K465 is given in Table 1. For this purpose, samples were dissolved 

at 1483 K for 4 hours. Experimental conditions are shown in Table 3. As a result, as the cooling rate 

increased, the size of the γ' precipitates decreased and the mechanical properties of the samples increased. It 

has also been found that the coarse γ' particles are greatly influenced by the cooling rate of the shape and 

volume fraction [6].  

Kavoosi and colleagues investigated the effect of cooling rate on the microstructure and mechanical properties 

of the IN738LC superalloy. Chemical composition of the alloy is given in Table 1. For this purpose, it was 

dissolved for 2 hours at 1120 ºC. Experimental conditions are shown in Table 2. As a result, as the cooling 

rate increased, the size of the γ' precipitates decreased and the mechanical properties of the samples increased. 

It has also been found that the shape and volume fraction of the unified γ' particles are greatly reduced by the 

effect of the cooling rate [7].  

Singh et al. investigated the effect of cooling rate on the development of multiple generation γ' precipitates of 

Rene88DT superalloy. The chemical composition of Rene88DT is given in Table 1. For this purpose, it was 

dissolved for 4 hours at 1124 ºC. Experimental conditions are shown in Table 2. Continuous cooling at a very 

high rate after dissolving in the single gamma phase results in a high degree of nucleation and a monomodal 

size distribution with non-equilibrium compositions. A relatively slow cooling rate (24 ºC/min) Resulting in a 

multimodal size distribution; the larger first generation primary precipitates exhibit near-equilibrium 

composition, while the smaller-scale secondary γ' precipitates exhibit non-equilibrium composition [8].  

Milenkovic et al. examined the effect of cooling rate on the microstructure of MAR-M247 superalloy. The 

chemical composition of MAR-M247 is given in Table 1. The samples were dissolved at about 1633 K for 5 
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min. Experimental conditions are shown in Table 3. MAR-M247 showed cellular (15 K/min) and dendritic 

(60, 300 and 600 K/min) microstructures. It has been determined that the microstructures also change with the 

cooling rate. γ/γ′ matrix with carbides and γ/γ′ eutectic at 15 K/s, γ/γ′ matrix with carbides at 60 K/min, and 

γ/γ′ matrix with carbides and γ/MC eutectic at 300 and 600 K/min. Furthermore, it has been observed that the 

range of secondary dendritic arms decreases and the hardness increases as the cooling rate increases [9].  

Behrouzghaemi and Mitchell examined the effect of cooling rate on the microstructure of IN738LC 

superalloy. The chemical composition of IN738LC is given in Table 1. The samples were dissolved at about 

1120 ºC for 2h. Experimental conditions are shown in Table 2. As the cooling rate decreases, the γ' solid state 

shows morphological instability and the γ' size shrinks as the cooling rate decreases. The shape changes 

observed in this study revealed the effect of the cooling rate on the disturbances between γ and γ' [10].  

Mehta et al. examined the effect of cooling rate on the microstructure of CM247LC superalloy. The chemical 

composition of CM247LC is given in Table 1. The samples were dissolved at about 1230 ºC for 2 h. 

Experimental conditions are shown in Table 2. As a result, as the cooling rate increased, the size of the γ' 

precipitates decreased and the mechanical properties of the samples increased [11]. 

3. Conclusion  

The cooling rate plays a very important role in controlling the amount, size, morphology and distribution of 

cooling γ' precipitates. The average sizes of the secondary or tertiary γ' precipitates are inversely correlated 

with the cooling rate. The shape of the secondary γ' precipitates in the grain varies from butterfly like to 

spherical with the cooling rate. However, all the tertiary γ 'precipitates formed, irrespective of the cooling rate, 

are spherical.  

Cooling rate has an important effect on the precipitation behaviors of γ' phase at grain boundaries and the 

apparent width of grain boundaries; the higher the cooling rate, the narrower is the apparent width of grain 

boundaries. As the cooling rate increased, the size of the γ' precipitates decreased and the mechanical 

properties of the samples increased. It is observed that the increased cooling rate increases the strength. 
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