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ABSTRACT   

This article shows results of a numerical study of the behavior of multi-storey reinforced concrete wall-frame 

structure under loads of special combination, considering seismic impact that corresponds to destructive earthquake. 

The purpose of the study is to identify conditions that increase energy absorption capacity of wall-frame structure 

under the effect of destructive earthquakes as well as methods for assessing the energy absorption capacity of wall-

frame structure at the design stage. Numerical studies were carried on 9-storey frame building, designed for 

construction in the area with an estimated seismicity of 7 points. Loads of special combination were applied until the 

complete exhaustion of the bearing capacity of the structure. The calculations were made using the LIRA software 

package. Performed studies made it possible to identify and assess bearing capacity margin of buildings designed to 

meet the requirements of valid antiseismic construction regulations if earthquake intensity exceeds the design 

calculated value. As a result of a numerical study of the work of a 9-storey frame reinforced concrete building of a 

frame scheme corresponding to the third version of the system, the building withstood the load exceeding the 

estimated norm by 30%. The value of the coefficient showing the deformation properties during operation of the 

system at loads exceeding the calculated values before failure, amounted to K = 3.1. The results obtained give the 

designer the opportunity to create conditions for the appearance of plastic joints in as many cross sections of frame 

elements as possible. This in turn leads to an increase in the energy intensity of the skeleton, capable of absorbing the 

excess energy of a destructive earthquake. We have developed the recommendations for determining bearing capacity 

margin of buildings at design stage if earthquake intensity exceeds calculated value. 
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1. Introduction 

For the purpose of this article, destructive earthquakes are earthquakes, which intensity exceeds calculated 

values established by valid regulations by 1-2 points. The intensity of the earthquake in this case was 

estimated in points according to the MSK-64 (K) scale. 

As a rule, such earthquakes cause significant damage to the supporting buildings and structures or result in 

their complete destruction. Destructive earthquakes are quite frequent phenomenon, causing significant 

material damage and leading to numerous human victims. Therefore, it is critical to study the behavior of 
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structural elements of buildings and structures during such earthquakes, as well as develop of measures aimed 

at mitigation of their negative effects. 

Structural layout that is most frequently used in seismic areas is multi-storey reinforced concrete wall-frame 

structures. Such structures are characterized by multiple static indeterminacy and therefore should have 

certain bearing capacity margin. Strength margins of the frame elements are especially critical for buildings 

designed in seismic areas since seismic impact may exceed calculated value established by valid normative 

documents during earthquake.  

We believe that the increased bearing capacity of a multiple statically indeterminate frame system is due to its 

increased energy absorption capacity, i.e. the ability of the system to absorb excessive energy. This can be 

explained by the fact that plastic hinges may appear in sections of system elements where forces from external 

impacts exceed critical force taken by them.  

In this case, the forces are redistributed between overloaded or lightly loaded sections of elements of frame 

structure. Due to this fact, the system may take additional external impacts. Theoretically, such frame system 

designed for seismic areas should have high energy absorption capacity for unexpected exceeding of 

earthquake intensity stipulated by the project.  

Reinforced concrete wall-frame structures were not always able to absorb excessive seismic energy judging 

from the experience of destructive earthquakes. In most cases, basic supporting elements of such systems are 

subject to brittle destruction without plastic hinges, due to which the forces are not redistributed between 

sections of system elements.  

It is known that plastic hinge takes place in reinforced concrete structure only if the tension in tensioned 

reinforcement reaches yield point, and the concrete of the compression area does not lose the bearing capacity. 

Such system should absorb excessive seismic energy in the event of destructive earthquakes. However, it is 

necessary to create certain conditions that promote the development of plastic hinges in the largest possible 

number of elements of the frame system. 

In spite of ensuring seismic resistance of buildings according to design value of earthquake intensity, one of 

the major tasks in antiseismic construction is the development of methods for calculation of buildings that 

would allow precise evaluation of structure’s ability to resist destructive seismic impacts when the intensity of 

an earthquake exceeds the design value. Therefore, it is necessary to study the behavior of structure elements 

under destructive seismic force.  

Such studies will make it possible to develop recommendations for determining system’s bearing capacity 

margin for destructive earthquake at design stage. This study also includes the study of the behavior of 

buildings and structures under loads, exceeding the limit values established by the current standards. Today, 

such studies can be carried out with the use of numerical methods and software that considers real properties 

of structure materials under the effect of destructive loads. This makes it possible to analyze the behavior of 

structures with different stiffness properties within entire range of strength properties of materials, including 

destruction point.  

The purpose of our study is to identify conditions that are necessary for the formation of plastic hinges in 

sections of the elements of reinforced concrete wall-frame structures. The fulfillment of these conditions even 

at the design stage can lead to the increase in the energy intensity of frame systems due to redistribution of 

forces from overloaded sections to light loaded sections.  

Analysis of results of studies in the field of antiseismic construction [1-12] showed that works devoted to 

increase in energy absorption capacity of the structures are almost absent. Since studies [1-12] provided only 

general guidelines for the construction of earthquake-resistant frame buildings, in this study, the authors focus 

on increasing the energy intensity of buildings, which significantly distinguishes this article from the above. 

Therefore, our study can be of interest not only from a practical, but also from a scientific point of view.  

In this work, authors studied the issues of increasing the bearing capacity of reinforced concrete frame-wall 

structures due to the formation of the greatest possible number of plastic hinges from external impacts 

exceeding the calculated values that can occur at destructive earthquakes. 
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2. Theoretical overview 

Analysis of the effects of destructive earthquakes on the basis of surveys of the results of destructive 

earthquakes suggests that the destruction in elements of framed systems of destroyed buildings has brittle 

nature [1]. This type of destruction prevents plastic hinges and redistribution of forces between overloaded 

and light loaded sections of framed system elements. The work [1] covers the results of a survey of frame and 

panel buildings after the earthquake in Spitak city (December 7, 1988 in the northern regions of Armenia) and 

the earthquake in the Southern Kuril Islands (October 4, 1994). Damage and destruction of buildings and 

structures were analyzed during these destructive earthquakes. There are examples showing that such 

earthquakes can cause complete destruction of the building frame.  

According to [1, 2], the intensity of seismic impact exceeded the level established by standards that were valid 

at the time of the earthquake by the following values: 

• in Spitak city: by 2 points,  

• in Kirovakan and Stepanavan city: by 1 point,  

• in Leninakan city: by 0.5 ... 1.0 points. 

According to our terminology, all of these earthquakes refer to destructive earthquakes. 

The results of the engineering analysis of the consequences of the earthquake that occurred in Armenia in 

1988 [1, 2] showed that the reinforced concrete wall-frame structures did not have sufficient bearing capacity 

margin. Therefore they were seriously damaged and even destructed completely. 

Some authors in their work [6-12] indicate that one of the reasons for the insufficient seismic resistance of the 

supporting structures of multi-story reinforced concrete wall-frame buildings is that such buildings are 

designed for unreasonably underestimated seismic loads. They came to the conclusion that the value of 

seismic loads in regulations [4, 5] is unreasonably underestimated. 

It should be noted that at current methods for assessing the seismic resistance of wall-frame buildings consider 

elastic-plastic behavior of building elements, taking into account the effect of the peak values of the seismic 

impact level [13-29]. The value of residual system deformation that takes place under the effect of peak values 

of seismic impact level is used for evaluation of seismic effect. The estimation of seismic resistance by the 

value of residual deformations considers not only the elastic-plastic properties of the system but also the effect 

of the levels of seismic impact.  

However, this method for estimating seismic resistance makes it impossible to determine the energy intensity 

of the system at the design stage of buildings and structures and does reveal the behavior of buildings and 

structures under destructive earthquakes. In certain cases, such earthquakes are the cause of the complete 

destruction of the elements of reinforced concrete structures. 

The design of buildings and structures planned for construction in seismic areas consider requirements of 

regulations of the relevant countries. 

At the same time, the degree of ensuring the seismic resistance of designed buildings and structures depends 

on the extent, to which regulations of the relevant countries reflect the results of theoretical and experimental 

studies of structures and buildings in the field of antiseismic construction. One of the major requirements to 

seismic resistance of a structure is the development of plastic deformations in structures and junctions, the 

need to provide constructive measures that ensure the stability of geometric shape of structural systems, as 

well as eliminating the brittle destruction of their elements during the development of such deformations.  

Today, regulations on design of buildings and structures adopted in different countries provide for the 

development of plastic deformations in structural elements and the possibility of eliminating brittle damages. 

Moreover, the evaluation of favorable effect of the development of plastic deformations on seismic resistance 

of reinforced concrete elements of wall-frame buildings varies depending on the country.  

For example, according SNiP II-7-81* and SP 14.13330.2011, the favorable effect of the development of 

plastic deformations on the bearing capacity of reinforced concrete structures under seismic impact is partially 

based on structure behavior factor тkp, that is equal to 1.2 upon calculation of the strength by normal sections 
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of reinforced concrete elements fitted with reinforcement that have physical yield strength. The disadvantage 

of this approach is based on the fact that the use of this factor prevents plastic deformations in sections of 

reinforced concrete elements under seismic impact that exceeds design value. 

Instead of factor тkp, Construction Codes and Regulations of Republic of Kazakhstan, namely SNiP RK [4], 

provide for the use of two factors: reinforcement behavior factor γsi and concrete behavior factor γbi, which 

consider the development of plastic deformations in reinforcement and damage accumulation in concrete, 

respectively. However, judging from the results of the study of behavior of wall-frame buildings under 

seismic impact, the use of above-mentioned factors doesn’t allow control of formation of plastic areas in the 

elements of wall-frame systems under the effect of destructive earthquakes. Judging from the result of 

analysis of earthquake consequences, destructive earthquakes with intensity that exceeds designed value by 1 

and 2 points are quite often. Under these circumstances, it is necessary to regulate the order of formation of 

plastic areas in the elements of statically indeterminate systems, which include wall-frame structures, in order 

to improve the seismic resistance of such buildings in general under destructive earthquakes while preventing 

destruction of more critical structures that lead to complete destruction of the buildings.  

Regulations adopted in non-CIS countries [11] provide for different specifics of the impact as well as elastic-

plastic properties of materials of structures, partially considering additional structure behavior factors that are 

considered together with conditions in structural elements or thresholds of their static bearing capacity. USA 

regulations provide for the use of such factors in order to consider elastic-plastic properties of material and 

specifics of behavior of some connections. Their values are taken from 0⁰ for bonds tensioned perpendicular 

to horizontal joints to 1.0⁰ for monolithic reinforced concrete structures and joints of reinforced concrete 

elements are calculated on the basis of factor that is equal to 0.5-0.8. According to regulations of New 

Zealand, structure behavior factor is taken from 0.8 to 2.5. In Argentina, the same factor is equal to 1.4. 

Regulations of some other countries contain recommendations for increasing the permissible stresses by 20-

35% in comparison with calculated stresses under conventional bearing loads [11]. Considering above-

mentioned facts, the consideration of specifics of seismic effect and elastic-plastic properties of materials is 

compulsory and these factors are considered differently, depending on the country.  

The analysis of the requirements of European construction standards (Eurocodes) [30] shows that the norms of 

European countries also take into account the ability of different structural systems to resist seismic impact in 

terms of nonlinear deformation. This circumstance in Eurocodes is considered by behavior factor q used for 

determining the value of seismic loads. Behavior factor q is a factor used to reduce seismic forces, determined 

though linear calculation, in order to take into account the nonlinear response of the structure, conditioned by 

nonlinear behavior of the material, the structural system and features of the adopted design methodology. 

Behavior factor is an approximate value of the ratio between seismic loads that would affect building or 

structure with its fully elastic response and 5% viscous damping and seismic loads that can be used in the 

design based on the results of linear elastic calculation. The values of behavior factor determine the ability of 

structural systems to resist seismic impacts in terms of nonlinear deformation and determine extend of 

consideration for their nonlinear behavior under seismic impacts. 

The values of the coefficient K2 established by regulations of the Russian Federation, as well as other similar 

coefficients adopted in other CIS-countries consider the reduction of seismic load due to the development of 

inelastic deformations in the systems, depending on the adopted design solutions. In terms of value, these 

coefficients adopted by regulations of CIS-countries, including regulations of the Russian Federation and the 

Republic of Kazakhstan, correspond to the inverse value of behavior factor (1/q) adopted by Eurocodes when 

determining the value of the seismic load. In terms of physical meaning, coefficients used in CIS countries 

and in Eurocodes take into account the possibility of reducing the value of the seismic load due to the 

development of inelastic deformations depending on the adopted design solutions of the designed buildings. 

At the same time, the approaches adopted in regulations of these countries make it possible to determine the 

degree of reduction of seismic load on buildings in the process of development of plastic deformations, 
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depending on adopted design decisions. At design stage, it is impossible to give certain answer to the question 

whether the degree of development of plastic deformations corresponds to the level of reduction of seismic 

loads stipulated by the project [31-33]. 

The analysis of previous studies and regulatory documents in many countries has shown that there is no 

methodology allowing estimation of system’s ability to absorb excess energy during destructive earthquakes 

even at the design stage. There are no developed recommendations for the calculation of buildings and 

structures, which would allow even at the design stage to evaluate the ability of structures to resist 

earthquakes, the intensity of which exceeds the values considered in calculations at design stage. The above-

mentioned coefficients adopted by regulations of seismic resistant construction in many countries, considering 

the different levels of seismic load reduction depending on the adopted design layouts, do not always justify 

the increase in energy intensity of the system.  

Judging from analysis of the consequences of destructive earthquakes, the latter can cause significant damage 

to the frame elements or their complete destruction, regardless of the degree of development of plastic 

deformations, which is adopted during the design of the building. In such cases, the reinforced concrete frame 

will not be able to fully realize its reserves, determined during the design of systems. Reinforced concrete 

frame can redistribute the force from overloaded sections to less loaded ones only when plastic deformations, 

namely the formation of plastic hinges, can appear in any section of frame elements. 

3. Material and methods 

This work was based on numerical studies that allowed studying the behavior of all structural elements of a 

building in the entire range of strength properties of concrete and reinforcement, including the moment of 

destruction. This research method was chosen due to fact that it allows to set different variants of stiffness 

characteristics of its elements. Adopted methods of research allow us to set any quantity of loading steps 

before destruction and under any combination of loads. Moreover, you can get data about behavior of all 

elements of building frame at any stage of construction.  

Study program provided for study of the behavior of reinforced concrete multi-storey frame buildings under 

seismic loads and destructive values in order to identify the bearing capacity of such systems if earthquake 

intensity exceeds its estimated values, established by standards for this region. For this purpose, the program 

includes studies of the behavior of 9-storey wall-frame building, designed for construction in the area with an 

estimated seismicity of 7 points under combined effect of loads of a special combination up to the complete 

exhaustion of the bearing capacity.  

In this case, three variants of buildings with different stiffness characteristics of columns along the height of a 

building were subjected to numerical studies. In the first variant, the characteristics of a multi-storey frame 

building are adopted as follows: 

• number of floors: 9; 

• the height of ground floor: 3.8 m; 

• the height of other floors: 3 m; 

• cross-section dimensions of the bolt 40x60cm; 

• the thickness of the monolithic plate: 20cm; 

• cross-sectional dimensions of columns for all floors of the building: 40x40 cm; 

• concrete grade B25; 

• longitudinal reinforcement class A-III. 

A preliminary design of building for loads of a special combination with an earthquake intensity of 7 points 

showed that the percentage of reinforcement of columns on the 1st floor exceeded 7%, which is unacceptable 

for seismic areas according to regulations of many countries of the world. Therefore, in the first variant of the 

building, the cross sections of the ground floor columns were increased to 45x45 cm so that reinforcement 

percentage of the columns did not exceed 6%, which is maximum allowable value for seismic areas adopted 

by many countries of the world. Other parameters of the building remain the same. 
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In the second variant of the 9-storey building, the cross-sectional dimensions of the columns were adopted so 

that the amount of longitudinal reinforcement required to ensure the seismic resistance of the building did not 

exceed 3%. At the same time, the condition of minimum reinforcement of columns was observed in 

accordance with the design requirements of the SNiP RK [4]. This condition was ensured by increase of cross-

sectional dimensions of the columns. The cross-sectional dimensions of the columns from the first to the 

fourth floors of the building have been increased to 50x50 cm, and the cross-sectional dimensions of the 

columns from the fifth to the ninth floors of the building have been increase to 40x40 cm. This measure 

allowed us to reduce relative height of the compressed concrete zones in the cross sections of the columns and 

create the conditions for reaching yield stress, namely preconditions for the development of plastic 

deformations (the appearance of plastic hinges) in the tensioned reinforcement. 

We have also studies the behavior third variant wall-frame structure where cross-sectional dimensions of the 

columns are adopted in order to ensure normal level of compression by longitudinal force. At the same time, 

the dimensions of the cross sections of the columns were adopted in such a way that the number of 

longitudinal reinforcement of the columns was adopted to be close to the minimum permissible percentage of 

reinforcement of the columns in accordance with the requirements of antiseismic construction standards [4].  

The compliance with these requirements made it possible to create favorable conditions for development of 

plastic deformations in eccentrically loaded buildings under loads of a special combination, considering the 

seismic effects. Considering accepted cross-sectional dimensions of the columns, the amount of reinforcement 

should be close to the minimum percentage of reinforcing. 

Considering the above conditions, the dimensions of the cross section of the columns should be as follows: for 

ground and second floors: 55x55 cm, for the third and fourth floors: 50x50cm, for the fifth and sixth floors: 

45x45cm, for seventh to ninth floor: 40x40cm.  

All three variants of buildings were subjected to seismic calculations with an earthquake intensity of 7 points, 

in order to determine the number of reinforcement in reinforced concrete frame elements. 

Frame structure was designed by LIRA software package based on combinations of loads, considering the 

seismic impact. The frame was loaded in steps, corresponding to 10% of standardized loads of special 

combination with an earthquake intensity of 7 points. In other words, the 10th loading step corresponds to the 

loads of particular combination with an earthquake intensity of 7 points. Each loading step was accompanied 

by horizontal movements of the building caused by elastic-plastic deformations of concrete and 

reinforcement. The following dependences were created: ‘Horizontal load - horizontal displacement’. The 

behavior of reinforced concrete structure was simulated by exponential dependence ‘tension-deformation’ that 

was based on real values of strength and stress-strain behavior of concrete of grade B25 under compression 

and tension forces. The behavior of longitudinal working reinforcement was simulated by the symmetric 

dependence "tension-deformation" considering the real values of the strength and stress-strain behavior of 

reinforcement of class A-III under compression and tension forces. 

In order to determine the bearing capacity of the building, designed to meet the requirements of the standards 

of antiseismic construction, its frame system was subjected to seismic impact with intensity exceeding 7 

points. The effect of destructive earthquakes was simulated in order to determine the exceeded seismic load.  

This method for studying the behavior of frame buildings made it possible to reveal the ability of the studied 

systems to absorb excess seismic energy, the accommodation of which is not calculated at design stage. In 

order to study the ability of systems to absorb excess seismic energy, the elastic-plastic work of the system 

elements, and the system as a whole, was studied until complete destruction. Evaluation of the ability of 

structural elements of the frame to absorb seismic energy was carried out using energy criteria. 

In our studies, the ability of the system to deform at seismic loads exceeding the design value is estimated by 

the deformation coefficient K. This coefficient is the ratio between total deformation corresponding to the 

destruction of the system and system deformation corresponding to the design load. Consequently, the 

coefficient K can be used to assess the system's ability to develop plastic deformations and absorb excess 

seismic energy under destructive dynamic loads. The higher the value of this coefficient, the greater is the 
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energy absorption of the system and its ability to resist the horizontal components of the seismic load that 

exceeds standard values. 

4. Results and discussion 

The calculations showed that the values of the maximum displacements and wrapping of the floors as a result 

of the elastic calculation of the reinforced concrete frame structure in all three variants, with the accepted 

characteristics of its elements, did not exceed the limiting values stipulated by the regulations.  

Based on calculation of resistance of reinforced concrete frame systems to special combinations of loads with 

seismic intensity equal to 7 points pursuant to requirements of SNiP RK [4], it is decided to reinforce elements 

of reinforce concrete frame with longitudinal and transversal reinforcement. Final reinforcement of the 

elements of wall-frame building, namely columns, is adopted based o unification of frame elements.  

The percentage of longitudinal reinforcement of columns was within 0.88-4.52% provided that requirements 

to minimum and maximum percentage of reinforcement are observed. Frame system with such reinforcement 

was subject to numerical study on the effects of loads of a particular combination, considering the seismic 

effects of varying intensity, exceeding the calculated values adopted in the design of these buildings.  

Figure 1 shows a graph of the horizontal displacement of the building frame at the level of the building 

coverage under the effect of seismic load, corresponding to the earthquake intensity of 7 points. 

 

Figure 1. "Load-displacement" dependence for a 9-storey reinforced concrete frame structure for an area with 

seismic intensity of up to 7 points. Note: The 10th step of loading corresponds to the magnitude of the seismic 

impact intensity of 7 points 

Elastic-plastic behavior of the frame was observed in the process of loading the frame with loads of a special 

combination, considering the horizontal effects simulating the seismic load of the calculated value. The 

complete destruction of the frame was achieved in the process of increasing the value of horizontal loads. 

An analysis of the stress-strain state of the frame elements showed that, with an increase in the magnitude of 

the horizontal loads to the complete destruction of the system, there was a complete destruction of the 

building as a result of the destruction of most loaded columns of the lower floors of the frame. Figure 2 shows 

the dependence ‘horizontal load – horizontal displacement’ of the first variant of the system adopted in study. 
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Figure. 2. Dependence "horizontal load - horizontal displacement" for the first variant of wall-frame building; 

Note: The 10th loading step corresponds to the magnitude of the seismic impact intensity of 7 points 

Considering loads of a special combination corresponding to the design values, the most stressed elements of 

the frame were the columns of the lower floors of the frame. Based on results of the study of behavior of 

multi-storey frame under loads of special combinations, considering horizontal loads that simulate seismic 

effect with an intensity of 7 points, the development of considerable plastic deformations associated with 

behavior of the reinforcement in flow range or outside it was not observed. When values of seismic force 

reach design level stipulated by regulations, in sections of columns of higher floors, the deformations in 

concrete and reinforcement were considerably lower than their threshold values.  

Figure 3 shows the results of study of the stress-strain state of the frame elements considering the elastic-

plastic behavior of reinforced concrete materials. 

 

Figure 3. Frame condition corresponding to destruction (11th loading step with horizontal load) 

This figure shows that loss of bearing capacity of most of the columns of three lower floors is mainly 

conditioned by destruction of the building as a whole (96% of the ground floor columns, 86% of the second 

floor columns and 82% of the third floor columns). Judging from this example, it is impossible to create the 
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system where the development of considerable plastic deformations would take place before destruction due 

to behavior of reinforcement in plastic areas.  

Judging from the results of this numerical study, frame buildings are subject to destruction under the effect 

strong destructive horizontal loads simulating seismic loads due to destruction of lower floor columns that are 

subject to the highest longitudinal compressive force under development of considerable plastic deformations 

in general. Moreover, bearing capacity of the most columns of upper floors fails to reach its threshold value 

before destruction.  

At the time of complete destruction of the building in the sections of most of the columns of the upper floors, 

namely the sections of most of the columns of the building from the fourth to the ninth floors, the stress values 

in the sections of the elements were far less than their threshold values. Such destruction is explained by the 

fact that bearing capacity of the columns of ground floor is exhausted due to minimal development of plastic 

deformations before destruction.  

This example suggests that the possibility for considerable plastic deformations is not ensured before 

destruction upon designing of reinforced concrete wall-frame systems, considering valid regulations. This 

condition limits the ability of such designed system to resist considerable seismic loads exceeding design 

value established by valid regulations.  

It is also impossible to increase the bearing capacity of these columns and the building in general by 

increasing the number of longitudinal reinforcement in the column since the development of significant plastic 

deformations and, accordingly, an increase in the bearing capacity of the columns is limited by the maximum 

value of concrete deformability under compression force. 

It is not reasonable to increase in the bearing capacity of columns of lower stories with a high level of 

compression through longitudinal force due to an increase in the number of longitudinal reinforcement with a 

fixed value of the cross-sectional dimensions of the columns and the class of concrete. Simple increase in 

reinforcement percentage of longitudinal reinforcement in sections of the columns of the lower stories of 

multi-storey buildings, in which the level of longitudinal compressive forces is very high, leads to under-

utilization of the strength properties of reinforcement at the time of destruction of the columns. This is 

explained by the fact that tensions in sections of tensioned reinforcement fail to reach threshold values of 

tension under conditions that correspond to maximum compressibility of concrete in compressed area. In other 

words, there are no preconditions for the formation of plastic hinges and, accordingly, for the redistribution of 

forces from overloaded sections to light loaded sections. In such cases, brittle fracture occurs in the 

compressed zone of concrete with the loss of stability of compressed reinforcement.  

It is well-known that the ability of the system, including frame buildings, to absorb seismic energy during 

destructive impacts depends on the degree of development of plastic deformations in the elements of the 

system before destruction provided that building will not lose general stability in the course of formation of 

plastic deformations. Therefore, the building should be designed in a way that allows the development 

considerable plastic deformations in system elements if seismic effect exceeds designed value stipulated by 

regulations. It is necessary to increase the ability of the building to absorb excessive seismic energy associated 

with the increase of the level of seismic impacts of its calculated value stipulated by regulations. The 

improvement in development of plastic deformations in system elements increases the ability of the system to 

absorb excessive seismic energy due to increase in the level of seismic impact against its design value.  

Judging from the results of a numerical study of the 9-story frame building, system designed to meet the 

requirements of antiseismic construction standards when seismic impact level exceeds its estimated value, 

stipulated by the standards, is destroyed as a result of the destruction of the lower floor columns when minor 

inelastic deformations develop. Certain safety margin of the building was observed in comparison with its 

design values under such type of destruction however such safety margin was very small. In our case, 

designed building was able to withstand load that exceeds designed value stipulated by regulation only by 

10%. In this case, coefficient value showing the ability of the system to deform under loads, exceeding value 

of designed seismic loads until system destruction was only K = 171.3/126.8 = 1.35. 
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These values, namely, the value of destructive load and the value of the deformation factor of a 9-story wall-

frame building characterize the low energy intensity of the adopted system of 1st variant building. Therefore, 

it is necessary to increase the ability of the system to absorb seismic energy. For this purpose, it is necessary 

to provide for certain measures for improvement of these system characteristics, which, in their turn, will have 

positive effect on improvement of dissipative properties of the system.  

At the design stage, it is necessary to adopt such characteristics of the building structures that ensure high 

deformation factor K before destruction or at the time of destruction.  

In order to study this issue, we have considered the second and third variant of the 9-storey frame building 

under loads of a special combination, taking into account seismic effect with an intensity exceeding the 

calculated values stipulated by valid regulations.  

As it was mentioned above, such dimensions of column cross section were adopted so that longitudinal 

reinforcement in columns fails doesn’t exceed 3%. At the same time, the condition of minimum reinforcement 

of columns conformed to design requirements of the SNiP RK [4]. The study of constructive system of the 

second variant showed that the destruction of this system also occurred as a result of the destruction of the 

columns of the lower floors. But for this system, the number of columns before the destruction amounted to a 

greater number in comparison with the first version. Figure 4 shows the "horizontal load - horizontal 

displacement" dependence of the second version of the building frame system. 

 

Figure 4. Dependence "horizontal load - horizontal displacement" for the second version of the building 

An increase in the cross section of the columns from the first to the fourth floors from 45x45 cm and 40x40 

cm by 50x50 cm allowed us to obtain a constructive system with a coefficient K = 2.1. The excess of the 

destructive horizontal load over seismic load corresponding to the calculated value stipulated by regulations 

was 10%. 

In the third version of the frame structure, as noted above, the dimensions of the cross sections of the columns 

are adopted in such a way that the number of longitudinal reinforcement of the columns is adopted to be close 

to the minimum reinforcement of the columns in accordance with the requirements to antiseismic construction 

[4]. The results of the numerical study of the third version of the frame structure are shown in Figure 5 where 

the "horizontal load – horizontal displacement" dependence is shown under the effect of loads of a special 

combination considering the elastic-plastic properties of construction materials for the third variant of the 

building system. 
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Figure 5. Dependence "horizontal load - horizontal displacement" for the third version of the building system 

The study of behavior of the constructive system of the third variant showed that the destruction of this system 

also occurred due to destruction of the columns. However, the number of involved columns before the 

destruction was equal to approximately 80% of the total number of columns of building frame. 

The results of the numerical study of the 9-story reinforced concrete frame building corresponding to the third 

version of the system show significantly better results compared to behavior of frames designed to meet the 

requirements of the SNiP RK [4]. For the considered version, we used higher safety margin of the building in 

comparison with its design value. This margin was equal to 30% in terms of load rate. In other words, the 

building of the third version withstood the load exceeding the calculated one established for by regulations by 

30%. The value of the coefficient that demonstrates deformability properties when the system is subject to 

loads exceeding the calculated values before destruction, was K = 3.1. 

The estimate of the system’s bearing capacity under loads of special combination considering seismic effects 

was made according to method based on the principle of comparing external energy and internal forces. 

According to this method described in the work of I.L. Korchinskiy [3], certain amount of energy should be 

spent for destruction of elements. Moreover, it does not matter whether entire energy will be spent 

simultaneously or in separate portions for the “n” number of loadings. According to this technique, the 

maximum seismic force maxS , which this system can bear, considering elastic-plastic behavior of materials of 

constructions, is determined by the following formula: 

 
n

Ek
SS

pl

y

][
2

max


 ,  (1) 

where 
plЕ  is the inelastic energy absorption capacity of the system, i.e. the energy absorbed by the element in 

the process of vibration of the system; 

yS  is seismic force corresponding to the elastic operation of the system; 

k  is rigidity of the system; 

n  is a number of reloads during an earthquake.  

As can be seen from this formula, the more the system has a plastic property, the greater is the load taken by 

the system under the effect of alternating dynamic load.  

Figures 6-8 show the relative "load-displacement" dependencies for three variants of frame building with the 

formation of plastic deformations. 
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Figure 6. Comparative dependence "load-displacement" for the first variant of wall-frame building under 

loads of a special combination 

 

Figure 7. Comparative dependence "load-displacement" for the second variant of wall-frame building under 

loads of a special combination 

 

Figure 8. Comparative dependence "load-displacement" for the third variant of wall-frame building under the 

loads of a special combination 
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The characteristics of each of the above systems describing their ability to resist the effects of loads of a 

particular combination, considering the seismic effects, when an earthquake exceeds the calculated value 

established by the standards, are shown in Table 1. 

Table 1. The results of a numerical study of the framework of the frame scheme on the effect of loads of a 

special combination 

Frame 

variant 

No. 

The maximum level 

of compression of 

columns of the lower 

floors of frame 

structure under 

longitudinal force 

0max bhRN b  

The percentage of 

longitudinal 

reinforcement of 

frame columns, 

% 

The ratio of destructive 

horizontal load to the 

calculated value of the 

horizontal load simulating 

seismic load yu PP  

The value of the coefficient 

showing the ability of the 

system to deform when the 

horizontal loads exceed the 

calculated value established by 

the standards K  

1 2.12 0.8-6.0 1.1 1.35 

2 1.47 0.8-3.0 1.1 2.10 

3 1.20 0.8-1.6 1.3 3.10 

Columns of buildings designed for seismic areas are symmetrically reinforced elements. The compression 

level for such elements can be characterized by the ratio of longitudinal compressive force N to the value 

0bhRb  . In this case, the relative height of the compressed zone of concrete   will be less than the boundary 

height R . It is necessary to reduce compression level in order to increase the plastic properties of the system 

in general. To reduce compression level of the columns in order to increase the plastic properties of the system 

in general, it is necessary to increase the cross-sectional dimensions of the columns or improve concrete 

grade. 

The obtained results allow the designer to create the conditions for formation of plastic hinges in the largest 

possible number of sections of the frame elements. This leads to the increase in the energy intensity of the 

frame, which is able to absorb the excess energy of the destructive earthquake. Moreover the proposed 

methodology for increasing the energy intensity of the frame makes it possible to evaluate this increase in 

numerical terms.  

As mentioned earlier, in similar studies, calculations were also performed to increase the seismic resistance of 

multi-storey frame buildings taking into account physically non-linear behavior, mathematical modeling et al. 

was used [6-14]. But in the conducted studies for the design of buildings, the authors used generally accepted 

recommendations for calculations [4]. The authors of this article departed from the general rules, due to which 

they got a much better result – the strength of the building increased by 30%.  

Also in these articles [15-25], the authors conducted research on buildings at the construction stage or which 

were already subjected to an earthquake. This study allows to evaluate in advance, at the design stage of the 

building, the carrying capacity of the system in excess of the magnitude of the seismic loads of the design 

magnitude. The proposed methodology for increasing the energy consumption of the frame is unique; it has 

not been studied in earlier researches. 

5. Conclusions 

The results of the numerical study of the 9-story reinforced concrete frame building corresponding to the third 

version of the system show significantly better results compared to behavior of frames. For the considered 

version, we used higher safety margin of the building in comparison with its design value. This margin was 

equal to 30% in terms of load rate. The value of the coefficient that demonstrates deformability properties 

when the system is subject to loads exceeding the calculated values before destruction, was K = 3.1. 

The results of this study have shown that the use of nearly maximum quantity reinforcement in the columns of 

the frame of multi-storey wall-frame buildings, which meets the requirements of the standards, does not 
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contribute to the improvement of plastic properties of the system in general. In other words, it is impossible to 

reduce the level of seismic loads by simply setting the level of reduction through the use of above-mentioned 

coefficients to the value of seismic loads, based on assumed elastic behavior of the system. It is necessary to 

check the possibility for development of plastic deformations of the system under seismic loads.  

The results of this numerical study gives the designer an opportunity to verify the degree of development of 

inelastic deformations of the system under seismic impact at design stage by taking appropriate measures in 

designing seismic-proof buildings and structures. Thus, developed recommendations based of the obtained 

research results make it possible to estimate in advance, at the design stage, the bearing capacity of the system 

when seismic load exceeds the design value. 

Considering above-mentioned facts, the major measure for increasing load absorption capacity of the system 

is designing of columns with reduced axial compression level. This can be achieved by increasing the cross-

sectional dimensions of the columns or improvement of concrete resistance to axial compression, while 

observing the requirements to minimum allowable longitudinal reinforcement. The implementation of these 

measures allows designing of the system suitable for development of significant plastic deformations under 

seismic loads that exceed design values. 

Based on the analysis of the results of numerical study of the behavior of multi-storey reinforced concrete 

frame building under of loads of special combination considering the seismic impact, the following 

recommendations are proposed for estimating the bearing capacity margin of considered systems designed for 

seismic areas in case of a destructive earthquake: 

 Frame elements should be adopted (dimensions of column cross section, percentage of longitudinal 

and transversal reinforcement, concrete and reinforcement grade) based on the calculation of wall-

frame building and requirements to current antiseismic construction norms. Based on adopted 

characteristics of the frame, it is necessary to check the deformability of the building using both 

elastic and elastic-plastic calculation and considering the real properties of materials of the structures 

calculated by software systems; 

 It is necessary to calculate the resistance of this system to loads of special combination, considering 

seismic effect and nonlinear behavior of system elements until complete destruction. Seismic load 

should be simulated by horizontal load affecting system masses. The direction of horizontal seismic 

load should correspond to the first natural mode of the building and its values should be adopted, 

considering higher mode of vibrations.  

 It is necessary to build a diagram ‘Load-displacement’ until complete destruction for the system 

designed based on requirements of valid antiseismic construction regulations. For this purpose, it is 

necessary to carry out calculations based on elastic-plastic characteristics of structure materials.  

 It is necessary to determine bearing capacity margin based on energy absorption capacity of the 

system, considering characteristics that determine plastic properties of the system, i.e. coefficient K 

that indicates the ability of the system to resist loads that exceed calculated value;  

 In case of minimal bearing capacity margin of the system, it is recommended to carry out calculations 

for improvement of plastic properties of the system. Characteristics of the elements of wall-frame 

building should be changed in such way so that dimensions of column cross section correspond to 

percentage of longitudinal reinforcement within 0.8%-3% of cross-section area of columns;  

 Then it is necessary to carry out calculations in above-mentioned sequence to determine bearing 

capacity margin of the system to ensure maximum energy absorption capacity.  

Major measure that allows the increase in energy absorption capacity at the stage of designing of wall-frame 

buildings is the reduction of the level of longitudinal forces in cross sections of columns by increasing the 

cross-sectional dimensions of the columns or improvement of concrete grade. The results of this work allow 

designers to create the required energy intensity of the frame of multi-storey buildings that can absorb the 

excess energy of destructive earthquake at design stage. 
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The results of our work can be summarized as follows: 

1. Favorable conditions for development of plastic hinges in the vertical elements of the reinforced 

concrete frame structure are disclosed. 

2. A method for estimating the energy intensity of a reinforced concrete frame structure of multi-storey 

buildings was developed and tested in a numerical experiment. 

3. Recommendations for improving the energy intensity of the reinforced concrete frame structure for 

destructive earthquake are proposed. 

Our study allowed creating systems capable of absorbing the excess energy of destructive earthquakes at the 

design stage. 
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