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 In this paper, we focus on detection and recognition of vehicles from a video 

stream. Contrasted with conventional techniques for article identification and 

arrangement, Machine learning strategies are another idea in the field of PC 

vision. Our model works in two phases: an information planning step, it 

comprises of applying Treatments on the pictures forming the dataset so as to 

separate the qualities, the subsequent advance is to apply the idea of 

convolutional neural systems to order vehicles. Vehicle discovery permits the 

utilization of different uses of computerized reasoning framework for a few 

purposes, particularly: canny transportation, programmed checking, self-

sufficient driving, and driver wellbeing ensure. The motivation behind this 

article is to enable us to identify vehicles moving before us by means of a 

camera put under the rearview mirror and draw the direction lines of our 

vehicle. In this work, we center on the location and acknowledgment of 

vehicles in a video stream. We have demonstrated that our strategy for work 

extraordinarily improves the exactness rate and diminishes the mistake rate, 

however in spite of the utilization of regularization, institutionalization and 

advancement systems, the preparation time of our model remains an issue to 

raise. Our method gave better results in terms of precision, detection and 

classification where we obtained an accuracy of 99.2%. 
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1. Introduction  

In this paper, vehicle detection allows the use of various applications of artificial intelligence system for 

several purposes, especially intelligent transportation, automatic monitoring, autonomous driving, and 

driver safety guarantee. The purpose of this article is to allow us to detect vehicles moving in front of us 

via a camera placed under the rearview mirror and draw the trajectory lines of our vehicle. In this work, 

we focus on the detection and recognition of vehicles in a video stream. For this reason, we have used the 

convolutional neural network technique and a dataset that contains images to enable recognition and 

classification of vehicles. The main purpose of our work is therefore to reduce human effort and offers 

research perspectives to make driving more enjoyable and almost autonomous. Our paper is organized as 

follows: the next part will discuss previous work that uses learning methods for vehicle detection, then we 

mailto:alshaher2006@yahoo.com
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will explain our proposed architecture (model), then we will calculate the estimate of the deviation of the 

vehicle, in the following part we will present the results obtained from this research. Finally, we will 

finish our work with a conclusion, and we will propose perspectives. 

 

Figure 1. Basic 3x3 convolving filter on a minor region of image. 

 

2. Background  

Convolutional neural networks are inspired from the visual brain cortex; they are used in recognition 

systems, robotics and self-driving cars as well as in other areas. They provide good results and a higher 

accuracy rate compared to traditional methods. A vehicle detection method presented by Chabot. F and al 

whose goal is to recognize the brand and model of vehicles. This approach is based sure setting 

correspondence between the vehicle in the picture and real 3D model. This method is based on a detector 

based on convolutional neural networks (CNN); its principle is based on the extraction of the points of 

interest corresponding to predefined parts on the image of the vehicle. These points will then be filtered 

and matched with the points of the 3D model [1]. A method of detecting vehicles from high resolution 

aerial imagery called HEM whose learning process uses convolutional neural networks. This method is 

proposed by Koga.Y and al [2]. Yang.M and al have adopted the use of a double-focal loss function 

(DFL-CNN) for the detection of vehicles in aerial images. This method is used to improve network 

capacity in order to distinguish vehicles in a crowded scene [3]. Zhou.Y and al are working on the 

problems of detection and classification of vehicles using deep neural network (DNN) approaches. They 

answer the three questions specific to their application, the first question is asked about the use of DNN 

for vehicle detection, the second question about useful functions for the classification of vehicles and one 

last question is how to extend a model on a set of limited size of data in the case of extreme lighting [4].  

Mengxi.W used the algorithm You Only Look Once (YOLO) to detect vehicles from a video stream 

dashboard camera [5]. The YOLO algorithm is developed by J.Redmon and al in 2015. This algorithm is 

used for the detection of objects, it is based on two stages; the first is to detect objects by convolutional 

neural networks, the second step makes the grid of the image and does the prediction of the detected 

object class if it exists. The advantage of this prediction is that it can be done independently since the first 

detection but that she does not target objects in particular. The disadvantage of this method is the 

difficulty of detecting the smallest objects as well as objects that are overlapping. The Faster R-CNN 

method is created by S.Ren and al in 2015 it is based on convolutional neural networks. She is considered 

as the first detector tested for the detection of apples [6]. 
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Table 1. Summary of different techniques used for the classification of vehicle types. 

Techniques Abstraction Complexity 

RNN [4] 

K-Nearest Network [7] 

Decision Tree [7] 

No 

Yes 

Yes 

High          

Low   

High 

3. Methodology 

In this paper, machine learning and deep learning based techniques were utilized to detect and recognize 

the vehicles and follow up their types. Convolutional neuron network efficiency depends to a large extent 

on the quality of the training data set; the network will produce good results only if the training data used 

contain sufficient important characteristics so that they can produce new predictions. 

3.1 The dataset used 

In order to evaluate our method, the dataset used includes two files (vehicle file and non-vehicle file). Our 

database has images extracted by video sequences (obtained by a front camera mounted on a car). To 

ensure good data learning, images are captured in different road conditions (far, near, left, right). The 

vehicle file includes 8798 images and the non- vehicle file includes 8971 images. Each image is of 

dimension: 64 * 64 pixels. 

 
Figure 2. Random image from the class vehicle of our data set with a kernel 3x3. 

 

 
Figure 3. Random image from the class Non-Vehicle of our data set. 
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Figure 4. Histogram of the database. 

 
The resemblance between the left part and the right part of the histogram happened because the number of 

non-vehicle images that is closer to the vehicle image number. 

 

3.2 Model Architecture 

Our model is composed of six layers of convolution, The first five convolutional layers use a ReLU 

activation function, knowing that there are several activation functions such as (sigmoid, TanhLeaky, 

ReLU, ... etc.) at the output of each of these layers, the Dropout layer is used to regularize the CNN. We 

add to the fifth convolutional layer the MaxPooling2D layer that will be explained later. The 

convolutional sixth layer uses a sigmoid activation function. 

 

3.3 The convolutional neural network of our model 

We present in this part the different modules used in the CNN, these modules are: convolution layers and 

activation functions. 

 

 
 

Figure 5. Illustrating the CNN architecture of our model. 
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The convolution layer is the main layer of CNN, which applies a specified number of convolution filters 

to the input image. This layer allows performing a set of mathematical operations to produce a unique 

value at the output, and then it applies an activation function. 

 

 

 

 

Equation (1) explains how to calculate the output of a given neuron in a convolutional layer [7]. 

 Is the yield of the neuron situated in line I, section j in highlight map k of the convolutional (layer 

l).  

 And are the vertical and level walks, and are the tallness and width of the responsive field, and is 

the quantity of highlight maps in the past (layer l – 1).  

 Is the yield of the neuron situated in layer l –  , pu    ′,    t  n j′,  n  ud    p k′ (      nn   k′  f 

the past layer is the information layer).  

 Is the inclination term for highlight map k (in layer l).You can consider it a handle that changes the 

general splendor of the component map k.  

 Is the association weight between any neuron in highlight map k of the layer l and its info situated 

 t   n  u,      nt v (w t     p  t t  t   n u  n'     p n  v  f   d),  nd         t   p k′  

It is possible to improve the effectiveness of treatment by intercalating in each treatment layer a 

mathematical function called activation function. In our work, we used two types of activation functions: 

The ReLU function [8,19], which will introduce nonlinearities in the model equation (2), and the sigmoid 

function [9] that will arrange the      ’  equation (3). There are two types of class: A class vehicle and a 

class non- vehicle. 

 

  (2) 

 (3) 

 

It allows to be disable randomly neurons during the different learning iterations to improve the 

compatibility of neural networks [11]. 

The pooling layer is typically used after the convolutional layer. It is used to reduce the dimensions of an 

image in order to reduce the calculation time and minimize the occupied memory space. The formula (4) 

below illustrates the calculation of the pooling size [12,17].   

          (4) 

 

 

W1, H1: the size of the input volume, F: The spatial size of the output volume, S: the pitch, and W2, H2: 

The size of the output volume. In the last step, we used fully connected layer (FC) to classify the data 

from the previous layer. 

 



  PEN Vol. 7, No. 3, September 2019, pp.985- 815  

990 

The heatmap function is usually used to extract the hot areas in an image. We used this function to detect 

vehicles running in front of the camera on the road. 

 
Figure 6. Heat Map illustrate the true prediction of our model. 

 

 

 

 

 

 

Figure 7. The stages to calculate estimated vehicle offset. 

 

In the first step, we transform the image of the undistorted road into an image in the form of "bird's-eye" 

which focuses only on the ends of the lane, and then displays the ends in such a way that they seem to be 

relatively parallel to each other. In the second step, we converted the image obtained in the previous step 

into other color spaces and then we converted the images to a shade of gray that highlight only the lines of 

the path and ignore everything else. To reach this objective we applied color channels (HLS, lab, LUV) 

and we specified the thresholds, which allowed identify the lines of the way in the images. The objective 

of the third step is to identify the peaks in a histogram of the image to determine the location of each line 

of the road, and then it identifies all the nonzero pixels around the peaks. In the fourth step, we calculated 

the radius of curvature, Based on the work of the authors [13,14,18], the formula of the radius of 

curvature at any point x of the y= f(x): 

 

     

 

 

In the last step, we assume that the camera is mounted in the center of the car below the mirror. The offset 

is calculated so that the center of the road is the midpoint of the two lines that we have detected. The 

offset is therefore the difference between the center of the car and the center of the lane see Figure 8. 

Perspective 
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Figure 8. The offset computing of the vehicle in circulation. 

 

4. Results 

In this part, we evaluate our model in terms of precision and performance to show the effectiveness of our 

approach. The figure below shows us some results obtained by our model. 

 

 
Figure 9(a). Vehicle classification and detection by our approach. 

 

 

 
Figure 9(b). Vehicle classification and detection by our approach. 
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The previous figures show that vehicle detection was well done by our model. The purpose of this article 

is to allow us to detect vehicles moving in front of us via a camera placed under the rearview mirror and 

draw the trajectory lines of our vehicle. 

 

 
Figure. 10 (a) Yellow surface show the classification of vehicle on the road line. 

 

 
Figure. 10 (b). Yellow surface show the classification of vehicle in the tunnel road line. 

 

In this figure, we find that our system has specified the road on which the vehicle must circulate. In the 

following figure 11, we show a graph that represents the evolution of precision curve on the learning set 

and the validation set. 

 
Figure 11. Accuracy of training and accuracy of validation. 
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Figure 12. The training error and the validation error. 

 

We find that accuracy increases progressively according to a number of epoch, and we observe that there 

is a gap between the two curves; this means that the model is become generalized in a better way 

especially from the fourth epoch. In the following, we show a graph that represents the curve evolution of 

the error function (Loss) on the learning set and the validation set.Figure. 12 shows that the error function 

decreases as the number of epoch increases. This means that the model gives a good prediction on the 

learning set as well as on the validation set. We find that the error function on the validation set begins to 

increase gradually from the fourth epoch; this means that the model is over-adjusted. We conclude that 

our model is better by reaching a satisfactory accuracy rate that reaches the 99.2% and very low error rate 

that equals 0.8%. Our model gives good results in terms of detection and recognition of vehicles in a 

video stream. 

 
Figure 13: Observing the exhibition of the AI and machine learning model by looking at the test and 

preparing exactness for differing number of ages. 
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5. Conclusion  

In this article, a technique for classification and identification of vehicles was available. The proposed 

calculation utilizes an AI and profound learning approach dependent on the convolutional neural system. 

We have touched base at our objective through two stages. The principal stage comprises of performing 

pretreatments on the learning game. The subsequent stage comprises of a convolutional arrange so as to 

separate the attributes and a completely associated neuron organize for acknowledgment and location of 

vehicles. We have demonstrated that our strategy for work extraordinarily improves the exactness rate 

and diminishes the mistake rate, however regardless of the utilization of regularization, 

institutionalization and streamlining strategies, the preparation time of our model remains an issue to 

raise. Utilizing these models in a proficient manner recognized and characterized the vehicles with 99.2% 

precision was gotten all through the vehicle characterization process. 

 

6. Future Work  

In future work, we want to improve the method by using a pre-trained neural network this will allow us to 

increase the performance of our model, Thus we plan to take advantage of the immense computing power 

of the GPU graphics processors by distributing the calculations on several GPUs. 
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