# Bounds of the initial coefficient for sakaguchi function in the conical domain 

S. Balaji ${ }^{1}$, B. Srutha Keerthi ${ }^{2}$<br>${ }^{1,2}$ Department of Mathematics, School of Advanced Sciences, VIT Chennai Campus

## Article Info

Received May 27, 2019

## Keyword:

Conical domain
Analytic functions
Sakaguchi type functions
k-uniformly starlike functions
q-differential Operator.

## Corresponding Author:


#### Abstract

In this paper, we consider a new class of sakaguchi type functions which is defined by Ruscheweyh q-differential operator. We investigated of coefficient inequalities and other interesting properties of this class.


B. SruthaKeerthi

Department of Mathematics, School of Advanced Sciences
VIT Chennai Campus, Chennai - 600 048, India
E-mail: sruthilaya06@yahoo.co.in

## 1. Introduction

Let $\mathcal{A}$ denotes the class of functions of the form

$$
\begin{equation*}
\mathrm{f}(\mathrm{z})=\mathrm{z}+\sum_{\mathrm{n}=2}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $D=\{z \in C:|z|<1\}$. If $f$ and $g$ are analytic function in $D$, then thefunction f is said to be subordinate to g , and write $\mathrm{f}(\mathrm{z}) \prec \mathrm{g}(\mathrm{z})$, if there exists a function $\omega$ analytic in D with $\omega(0)=0$ and $|\omega(z)|<1$ for all $z \in D$, $\operatorname{such} \operatorname{thatf}(z)=g(\omega(z)), z \in D$. Moreover, if the function $g$ isunivalent in $D$, then $f(z) \prec g(z)$ if and only if $f(0)=g(0)$ and $f(D) \subset g(D)$.
Kanas and Wisniowka [5, 6], established the conic kind of domain $\Phi_{k}, \mathrm{k} \geq 0$ as

$$
\Phi_{\mathrm{k}}=\left\{\mathrm{u}+\mathrm{iv}: \mathrm{u}>k \sqrt{(\mathrm{u}-1)^{2}+\mathrm{v}^{2}}\right\}
$$

We note that $\Phi_{k}$ is a region in the right half-plane, symmetric with respect to real axis, and contains the point $(1,0)$. More precisely for $\mathrm{k}=0$, $\Phi_{0}$ is the right half-plane, for $0<\mathrm{k}<1, \Phi_{\mathrm{k}} \mathrm{is}$ an unbounded region having boundary $\partial \Phi_{k}$, a rectangular hyperbola for $\mathrm{k}=1, \Phi_{1}$ is still an unbounded region where $\partial \Phi_{1}$ is a parabola, and for $\mathrm{k}>1, \Phi_{\mathrm{k}}$ is a bounded region enclosed by an ellipse. The extremalfunction for these conic regions are


$$
\mathrm{p}_{k}(\mathrm{z})= \begin{cases}\frac{1+\mathrm{z}}{1-\mathrm{z}}, & \mathrm{k}=0  \tag{2}\\ 1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{\mathrm{z}}}{1-\sqrt{\mathrm{z}}}\right)^{2}, & \mathrm{k}=1 \\ \frac{1}{1-\mathrm{k}^{2}} \cosh \left\{\left(\frac{2}{\pi} \operatorname{arccosk}\right) \log \frac{1+\sqrt{\mathrm{z}}}{1-\sqrt{\mathrm{z}}}\right\}-\frac{k^{2}}{1-\mathrm{k}^{2}}, & 0<\mathrm{k}<1 \\ \frac{1}{\mathrm{k}^{2}-1} \sin \left(\frac{\pi}{2 \mathrm{k}(\mathrm{kk}} \int_{0}^{\frac{\mathrm{u}(\mathrm{z})}{\sqrt{k}}} \frac{\mathrm{dk}}{\sqrt{1-\mathrm{t}^{2}} \sqrt{1-\mathrm{k}^{2} \mathrm{t}^{2}}}\right)+\frac{k^{2}}{\mathrm{k}^{2}-1}, & \mathrm{k}>1\end{cases}
$$

where $\mathrm{u}(\mathrm{z})=\frac{2-\sqrt{\mathrm{k}}}{1-\sqrt{\mathrm{kz}}}, \mathrm{z} \in \mathrm{D}$ and $\mathrm{k} \in(0,1)$ is chosen such that $\mathrm{k}=\cosh \left(\frac{\pi \mathrm{K}^{\prime}(\kappa)}{4 \mathrm{~K}(\kappa)}\right)$. Here $\mathrm{K}(\kappa)$ is Legendres's complete elliptic integral of first kind and $\mathrm{K}^{\prime}(\mathrm{K})=\mathrm{K}\left(\sqrt{1-\mathrm{k}^{2}}\right)$ and $\mathrm{K}^{\prime}(\mathrm{t})$ is the complementary integral of $\mathrm{K}(\mathrm{t})$ for details see $[1,5,6]$ and more recently $[9,12,14]$. If $P_{k}(z)=1+M_{1}(k) z+M_{2}(k) z^{2}+\cdots$, $z \in D$, then it was shown in [6] that for (2) one can have,

$$
\mathrm{M}_{1}(\mathrm{k})= \begin{cases}\frac{2 \mathrm{~A}^{2}}{1-\mathrm{k}^{2}} & 0 \leq \mathrm{k}<1  \tag{3}\\ \frac{8}{\pi^{2}} & \mathrm{k}=1 \\ \frac{\pi^{2}}{4 \mathrm{~K}^{2}(\mathrm{t})^{2}(1+\mathrm{t}) \sqrt{\mathrm{t}}} & \mathrm{k}>1\end{cases}
$$

$\mathrm{M}_{2}(\mathrm{k})=\mathrm{E}(k) \mathrm{M}_{1}(\mathrm{k})$
where

$$
E(k)= \begin{cases}\frac{A^{2}+2}{3} & 0 \leq k<1  \tag{4}\\ \frac{8}{\pi^{2}} & k=1 \\ \frac{(4 K(t))^{2}\left(t^{2}+6 t+1\right)-\pi^{2}}{24 K(t)^{2}(1+t) \sqrt{t}} & k>1\end{cases}
$$

with $\mathrm{A}=\frac{2}{\pi} \operatorname{arccosk}$
Further more a function $p$ is said to be in the class $k-P[A, B]$ if and only if

$$
\mathrm{p}(\mathrm{z}) \prec \mathrm{q}_{\mathrm{k}}(\mathrm{z}), \quad \mathrm{k} \geq 0
$$

$$
\begin{equation*}
\text { where } \mathrm{q}_{\mathrm{k}}(\mathrm{z})=\frac{(\mathrm{A}+1) \mathrm{p}_{\mathrm{k}}(\mathrm{z})-(\mathrm{A}-1)}{(\mathrm{B}+1) \mathrm{p}_{\mathrm{k}}(\mathrm{z})-(\mathrm{B}-1)} \tag{5}
\end{equation*}
$$

where $\mathrm{p}_{\mathrm{k}}$ is defined in (2) and $-1 \leq \mathrm{B}<\mathrm{A} \leq 1$. Geometrically the function $\mathrm{p} \in \mathrm{k}-\mathrm{P}[\mathrm{A}, \mathrm{B}]$ takes all the values from the domain $\Phi_{\mathrm{k}}[\mathrm{A}, \mathrm{B}],-1 \leq \mathrm{B}<\mathrm{A} \leq 1, \mathrm{k} \geq 0$, which is defined as:

$$
\begin{gathered}
\Phi_{\mathrm{k}}[\mathrm{~A}, \mathrm{~B}]=\{\omega: \mathfrak{R}((\mathrm{c}(\omega))>\mathrm{k}|\mathrm{c}(\omega)|\} \\
\text { where } \quad \mathrm{c}\left(\omega \left(=\left(\frac{(\mathrm{B}-1) \omega-(\mathrm{A}-1)}{(\mathrm{B}+1) \omega-(\mathrm{A}+1)}\right)\right.\right.
\end{gathered}
$$

or equivalently $\Phi_{\mathrm{k}}[\mathrm{A}, \mathrm{B}]$ is a set of numbers $\omega=\mathrm{u}+\mathrm{iv}$ such that

$$
\begin{aligned}
& {\left[\left(\mathrm{B}^{2}-1\right)\left(\mathrm{u}^{2}+\mathrm{v}^{2}\right)-2(\mathrm{AB}-1) \mathrm{u}+\left(\mathrm{A}^{2}-1\right)\right]^{2}} \\
& \quad>\mathrm{k}\left[-2(\mathrm{~B}+1)\left(\mathrm{u}^{2}+\mathrm{v}^{2}\right)+2(\mathrm{~A}+\mathrm{B}+2) \mathrm{u}-2(\mathrm{~A}+1)^{2}+4(\mathrm{~A}-\mathrm{B})^{2} \mathrm{v}^{2}\right]
\end{aligned}
$$

This domain represents the conic type of regions for detail see [11]. For any $n$ positive integer $n$, the $q$-integer number $\mathrm{n},[\mathrm{n}, \mathrm{q}]$ is defined by

$$
\begin{equation*}
[\mathrm{n}, \mathrm{q}]=\frac{1-\mathrm{q}^{\mathrm{n}}}{1-\mathrm{q}}=1+\mathrm{q}+\cdots+\mathrm{q}^{\mathrm{n}-1} \quad[0, \mathrm{q}]=0, \quad \mathrm{q} \in(0,1) \tag{6}
\end{equation*}
$$

q-differential operator be defined by

$$
\partial_{\mathrm{q}} \mathrm{f}(\mathrm{z})=\frac{\mathrm{f}(\mathrm{qz})-\mathrm{f}(\mathrm{z})}{(\mathrm{q}-1) \mathrm{z}}, \quad(\mathrm{z} \in \mathrm{D})
$$

It is easy to observe that for $n \in \mathbb{N}:=\{1,2,3 \ldots\}$ and $z \in D$

$$
\partial_{\mathrm{q}} \mathrm{z}^{\mathrm{n}}=[\mathrm{n}, \mathrm{q}] \mathrm{z}^{\mathrm{n}-1}
$$

Let the q-generated pochhammer symbol be defined as

$$
[\mathrm{r}, \mathrm{q}]_{\mathrm{n}}=[\mathrm{r}, \mathrm{q}][\mathrm{r}+1, \mathrm{q}][\mathrm{r}+2, \mathrm{q}] \ldots[\mathrm{r}+\mathrm{n}-1, \mathrm{q}]
$$

and for $\mathrm{r}>0$ let the q -gamma function be defined as

$$
\Gamma_{\mathrm{q}}(\mathrm{r}+1)=[\mathrm{r}] \Gamma_{\mathrm{q}}(\mathrm{r}) \text { and } \Gamma_{\mathrm{q}}(1)=1
$$

These kind of operators see [2,3,13], play great in GFT. Kanas et al, defined Rucheweyh q-differential operator as follows:

Definition 1. [7]
For the function $\mathrm{f} \in \mathcal{A}$ is in the form (1), the Rucheweyh q-differential operator is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})=\mathrm{f}(\mathrm{z}) * \mathrm{~F}_{\mathrm{q}, \lambda+1}(\mathrm{z}), \quad(\mathrm{z} \in \mathrm{D}, \lambda>-1) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{F}_{\mathrm{q}, \lambda+1}(\mathrm{z})= & \mathrm{z}+\sum_{\mathrm{n}=2}^{\infty} \frac{\Gamma_{\mathrm{q}}(\mathrm{n}+\lambda)}{[\mathrm{n}-1, \mathrm{q}]!\Gamma_{\mathrm{q}}(1+\lambda)} \mathrm{z}^{\mathrm{n}} \\
& =\mathrm{z}+\sum_{\mathrm{n}=2}^{\infty} \frac{[\lambda+1, \mathrm{q}]_{\mathrm{n}-1}}{[\mathrm{n}-1, \mathrm{q}]!} \mathrm{z}^{\mathrm{n}}  \tag{8}\\
& =\mathrm{z}+\sum_{\mathrm{n}=2}^{\infty} \phi_{\mathrm{n}-1} \mathrm{z}^{\mathrm{n}}
\end{align*}
$$

where

$$
\phi_{\mathrm{n}-1}=\frac{\Gamma_{\mathrm{q}}(\mathrm{n}+\lambda)}{[\mathrm{n}-1, \mathrm{q}]!\Gamma_{\mathrm{q}}(1+\lambda)}=\frac{[\lambda+1, \mathrm{q}]_{\mathrm{n}-1}}{[\mathrm{n}-1, \mathrm{q}]!}
$$

from (7) we get that

$$
\mathrm{R}_{\mathrm{q}}^{0} \mathrm{f}(\mathrm{z})=\mathrm{f}(\mathrm{z}), \quad \mathrm{R}_{\mathrm{q}}^{\prime} \mathrm{f}(\mathrm{z})=\mathrm{z} \partial_{\mathrm{q}} \mathrm{f}(\mathrm{z})
$$

and

$$
\mathrm{R}_{\mathrm{q}}^{\mathrm{m}} \mathrm{f}(\mathrm{z})=\frac{\mathrm{z} \partial_{\mathrm{q}}^{\mathrm{m}}\left(\mathrm{z}^{\mathrm{m}-1} \mathrm{f}(\mathrm{z})\right)}{[\mathrm{m}, \mathrm{q}]!} \quad(\mathrm{m} \in \mathrm{~N})
$$

Using (7) and (8), the power series $\mathrm{R}_{\mathrm{q}} \mathrm{f}(\mathrm{z})$ is given by

$$
\begin{align*}
\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})=\mathrm{z} & +\sum_{\mathrm{n}=2}^{\infty} \frac{\Gamma_{\mathrm{q}}(\mathrm{n}+\lambda)}{[\mathrm{n}-1, \mathrm{q}]!\Gamma_{\mathrm{q}}(1+\lambda)} \mathrm{a}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}}  \tag{9}\\
& =\mathrm{z}+\sum_{\mathrm{n}=2}^{\infty} \frac{[\lambda+1, \mathrm{q}]_{\mathrm{n}-1}}{[\mathrm{n}-1, \mathrm{q}]!} \mathrm{a}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}}
\end{align*}
$$

Note that

$$
\lim _{\mathrm{q} \rightarrow 1} \Gamma_{\mathrm{q}, \lambda+1}(\mathrm{z})=\frac{\mathrm{z}}{(1-\mathrm{z})^{\lambda+1}}
$$

and

$$
\lim _{\mathrm{q} \rightarrow 1} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})=\mathrm{f}(\mathrm{z}) * \frac{\mathrm{z}}{(1-\mathrm{z})^{\lambda+1}}
$$

When $\mathrm{q} \rightarrow 1$ see[16], we observe that

$$
\begin{equation*}
\mathrm{z} \partial\left(\mathrm{~F}_{\mathrm{q}, \lambda+1}(\mathrm{z})\right)=\left(1+\frac{[\lambda, \mathrm{q}]}{\mathrm{q}^{\lambda}}\right) \mathrm{F}_{\mathrm{q}, \lambda+2}(\mathrm{z})-\frac{[\lambda, \mathrm{q}]}{\mathrm{q}^{\lambda}} \mathrm{F}_{\mathrm{q}, \lambda+1}(\mathrm{z}) \tag{10}
\end{equation*}
$$

making use of (7), (10) and the properties of hadamard product we obtain the following equality

$$
\begin{equation*}
\mathrm{z} \partial\left(\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})\right)=\left(1+\frac{[\lambda, \mathrm{q}]}{\mathrm{q}^{\lambda}}\right) \mathrm{R}_{\mathrm{q}}^{\lambda+1} \mathrm{f}(\mathrm{z})-\frac{[\lambda, \mathrm{q}]}{\mathrm{q}^{\lambda}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z}) \tag{11}
\end{equation*}
$$

If $q \rightarrow 1$, the equality (11) implies

$$
\mathrm{z}\left(\mathrm{R}^{\lambda} \mathrm{f}(\mathrm{z})\right)^{\prime}=(1+\lambda) \mathrm{R}^{\lambda+1} \mathrm{f}(\mathrm{z})-\lambda \mathrm{R}^{\lambda} \mathrm{f}(\mathrm{z})
$$

which is the familiar recurrent formula for the above operator. we now defined the following classes of functions.

## Definition 2.

A function $f(z) \in \mathcal{A}$ is said to be in the class $k-U_{q}(\lambda, A, B, t), k \geq 0, \beta \leq 0, \quad t \in C$ with $|t| \leq 1$ $-1 \leq \mathrm{B}<\mathrm{A} \leq 1$, if and only if

$$
\begin{gathered}
\mathfrak{R}(\mathrm{c}(\mathrm{X}(\mathrm{z})))>\mathrm{k}|\mathrm{c}(\mathrm{X}(\mathrm{z}))| \\
\mathrm{X}(\mathrm{z})=\frac{(1-\mathrm{t})\left(\mathrm{zd}_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})\right)}{\left(\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})-\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{tz})\right)}
\end{gathered}
$$

orequvalently,

$$
\mathrm{X}(\mathrm{z})=\frac{(1-\mathrm{t})\left(\mathrm{z} \mathrm{\partial}_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})\right)}{\left(\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})-\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{tz})\right)} \in \mathrm{k}-\mathrm{P}[\mathrm{~A}, \mathrm{~B}]
$$

## Definition 3.

A function $\mathrm{f}(\mathrm{z}) \in \mathcal{A}$ is said to be in the class $\mathrm{k}-\mathrm{UC}_{\mathrm{q}}(\lambda, \mathrm{A}, \mathrm{B}, \mathrm{t}), \mathrm{k} \geq 0, \beta \leq 0, \mathrm{t} \in \mathrm{C}$ with $|\mathrm{t}| \leq 1,-1 \leq \mathrm{B}<\mathrm{A} \leq 1$, if and only if

$$
\mathrm{Y}(\mathrm{z})=\frac{\begin{array}{c}
\mathfrak{R}(\mathrm{c}(\mathrm{Y}(\mathrm{z})))>\mathrm{k}|\mathrm{c}(\mathrm{Y}(\mathrm{z}))| \\
(1-\mathrm{t})\left(\mathrm{z}_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})+\mathrm{z}^{2} \partial_{\mathrm{q}}^{2} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})\right)
\end{array}}{\mathrm{z}\left(\partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})-\mathrm{t} \partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{tz})\right)}
$$

orequvalently,

$$
Y(z)=\frac{(1-t)\left(z \partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})+\mathrm{z}^{2} \partial_{\mathrm{q}}^{2} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})\right)}{\mathrm{z}\left(\partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})-\mathrm{t} \partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{tz})\right)} \in \mathrm{k}-\mathrm{UC}_{\mathrm{q}}
$$

## Definition 4.

A function $\mathrm{f}(\mathrm{z}) \in \mathcal{A}$ is said to be in the class $\mathrm{k}-\mathrm{US}_{\mathrm{q}}(\lambda, \mathrm{A}, \mathrm{B}, \gamma, \mathrm{t}), \mathrm{k} \geq 0, \beta \leq 0, \quad \mathrm{t} \in \mathrm{C}$ with $|\mathrm{t}| \leq 1$ $-1 \leq \mathrm{B}<\mathrm{A} \leq 1$, if and only if

$$
\begin{gathered}
\mathfrak{R}(c(G(z))>\mathrm{k}|c(G(z))| \\
\mathrm{G}(\mathrm{z})=\frac{(1-\mathrm{t})\left(\mathrm{z}_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})+\gamma \mathrm{z}^{2} \partial_{\mathrm{q}}^{2} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})\right)}{(1-\gamma)\left(\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})-\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{tz})\right)+\gamma \mathrm{z}\left(\partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})-\mathrm{t} \partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{tz})\right)}
\end{gathered}
$$

orequvalently,

$$
\begin{equation*}
\mathrm{G}(\mathrm{z})=\frac{(1-\mathrm{t})\left(\mathrm{z}_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})+\gamma \mathrm{z}^{2} \partial_{\mathrm{q}}^{2} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})\right)}{(1-\gamma)\left(\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})-\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{tz})\right)+\gamma \mathrm{z}\left(\partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})-\mathrm{t} \partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{tz})\right)} \in \mathrm{k}-\mathrm{P}[\mathrm{~A}, \mathrm{~B}] \tag{12}
\end{equation*}
$$

## Remark 5.

It is easily see that $\lim _{q \rightarrow 1} \mathrm{k}-\mathrm{US}_{\mathrm{q}}(0, \mathrm{~A}, \mathrm{~B}, 0,0)=\mathrm{k}-\mathrm{ST}(\mathrm{A}, \mathrm{B})$ where $\mathrm{k}-\mathrm{ST}(\mathrm{A}, \mathrm{B})$ is a functions class, investigated by Noor and sarfraz [11]

## Lemma 6.[15]

Let $h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ be subordinate to $H(z)=1+\sum_{n=1}^{\infty} C_{n} z^{n}$. If $H(z)$ is univalent in $D$ and $H(E)$ is convex, then

$$
\left|c_{n}\right| \leq\left|C_{1}\right|, n \geq 1
$$

Lemma 7. [8,10]
If $q(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is an analytic function with positive real part in $D$ then,

$$
\left|\mathrm{c}_{2}-\mathrm{vc}_{1}^{2}\right| \leq 2 \max \{1,|2 \mathrm{v}-1|\}
$$

The result is sharp for the function

$$
\mathrm{q}(\mathrm{z})=\frac{1+\mathrm{z}^{2}}{1-\mathrm{z}^{2}} \quad \text { (or) } \quad \mathrm{q}(\mathrm{z})=\frac{1+\mathrm{z}}{1-\mathrm{z}}
$$

Lemma 8. [8]
If the function $\omega \in \mathrm{D}$ is in the form

$$
\omega(\mathrm{z})=\mathrm{c}_{1} \mathrm{z}+\mathrm{c}_{2} \mathrm{z}^{2}+\cdots \mathrm{z} \in \mathrm{D}
$$

Then,

$$
\left|c_{2}-\mathrm{vc}_{1}^{2}\right| \leq 1+(|v|-1)\left|\mathrm{c}_{1}\right|^{2}
$$

where v is the complex number
Lemma 9. [11]
Let $\mathrm{k} \in[0, \infty)$ be fixed and $\mathrm{q}_{\mathrm{k}}(\mathrm{z})$ in the form (5)then

$$
\mathrm{q}_{\mathrm{k}}(\mathrm{z})=1+\mathrm{H}_{1}(\mathrm{k}) \mathrm{z}+\mathrm{H}_{2}(\mathrm{k}) \mathrm{z}^{2}+\cdots, \mathrm{z} \in \mathrm{D}
$$

and
$H_{1}: H_{1}(k)=\frac{A-B}{2} M_{1}(k)$
$\mathrm{H}_{2}: \mathrm{H}_{2}(\mathrm{k})=\frac{\mathrm{A}-\mathrm{B}}{4}\left\{2 \mathrm{E}(\mathrm{k})-(\mathrm{B}+1) \mathrm{H}_{1}\right\} \mathrm{M}_{1}(\mathrm{k})$
where $\mathrm{M}_{1}(\mathrm{k})$ and $\mathrm{E}(\mathrm{k})$ are defined in (3) and (4)

## 2. Main Results

## Theorem 10:

A function $\mathrm{f} \in \mathcal{A}$ and of the form (1) is in the class $\mathrm{k}-\mathrm{US}_{\mathrm{q}}(\lambda, \mathrm{A}, \mathrm{B}, \gamma, \mathrm{t})$, if it satisfies the condition

$$
\begin{align*}
& \sum_{\mathrm{n}=2}^{\infty}\left\{2(\mathrm{k}+1)\left\{(1-\gamma) \mathrm{u}_{\mathrm{n}}+\left(\gamma \mathrm{u}_{\mathrm{n}}-1\right)[\mathrm{n}, \mathrm{q}]-\gamma[\mathrm{n}, \mathrm{q}][\mathrm{n}-1, \mathrm{q}]\right\}+\mid(\mathrm{B}+1)\{[\mathrm{n}, \mathrm{q}]+\gamma[\mathrm{n}, \mathrm{q}][\mathrm{n}-1, \mathrm{q}]\}\right.  \tag{13}\\
&\left.\quad-(\mathrm{A}+1)\left\{(1-\gamma) \mathrm{u}_{\mathrm{n}}+\gamma[\mathrm{n}, \mathrm{q}] \mathrm{u}_{\mathrm{n}}\right\} \mid\right\} \phi_{\mathrm{n}-1}\left|\mathrm{a}_{\mathrm{n}}\right| \leq|\mathrm{B}-\mathrm{A}|
\end{align*}
$$

roof.
Assume (13) is hold, then it suffices to show that


we have


$\leq(k+1)\left|\frac{(B-1)(1-t)\left(z \partial_{q} R_{q}^{\lambda} f(z)+\gamma z^{2} \partial_{q}^{2} R_{q}^{\lambda} f(z)\right)-(A-1)\left[(1-\gamma)\left(R_{q}^{\lambda} f(z)-R_{q}^{\lambda} f(t z)\right)+\gamma z\left(\partial_{q} R_{q}^{\lambda} f(z)-t \partial_{q} R_{q}^{\lambda} f(t z)\right)\right]}{(B+1)(1-t)\left(z \partial_{q} R_{q}^{\lambda} f(z)+\gamma z^{2} \partial_{q}^{2} R_{q}^{\lambda} f(z)\right)-(A+1)\left[(1-\gamma)\left(R_{q}^{\lambda} f(z)-R_{q}^{\lambda} f(t z)\right)+\gamma z\left(\partial_{q} R_{q}^{\lambda} f(z)-t \partial_{q} R_{q}^{\lambda} f(t z)\right)\right]}-1\right|$
$=2(k+1)\left|\frac{(1-\gamma)\left(R_{q}^{\lambda} f(z)-R_{q}^{\lambda} f(t z)\right)+\gamma z\left(\partial_{q} R_{q}^{\lambda} f(z)-t \partial_{q} R_{q}^{\lambda} f(t z)\right)-(1-t)\left(z \partial_{q} R_{q}^{\lambda} f(z)+\gamma z^{2} \partial_{q}^{2} R_{q}^{\lambda} f(z)\right)}{(B+1)(1-t)\left(z \partial_{q} R_{q}^{\lambda} f(z)+\gamma z^{2} \partial_{q}^{2} R_{q}^{\lambda} f(z)\right)-(A+1)\left[(1-\gamma)\left(R_{q}^{\lambda} f(z)-R_{q}^{\lambda} f(t z)\right)+\gamma z\left(\partial_{q} R_{q}^{\lambda} f(z)-t \partial_{q} R_{q}^{\lambda} f(t z)\right)\right)}\right|$
$=2(k+1)\left|\frac{\sum_{n=2}^{\infty}\left\{(1-\gamma) u_{n}+\left(\gamma u_{n}-1\right)[n, q]-\gamma[n, q][n-1, q]\right\} \phi_{n-1} a_{n} z^{n}}{(B-A) z+\sum_{n=2}^{\infty}\left\{(B+1)\{[n, q]+\gamma[n, q][n-1, q]\}-(A+1)\left\{(1-\gamma) u_{n}+\gamma[n, q] u_{n}\right\}\right\} \phi_{n-1} a_{n} z^{n}}\right|$
$=2(\mathrm{k}+1) \frac{\sum_{\mathrm{n}=2}^{\infty}\left\{(1-\gamma) \mathrm{u}_{\mathrm{n}}+\left(\gamma \mathrm{u}_{\mathrm{n}}-1\right)[\mathrm{n}, \mathrm{q}]-\gamma[\mathrm{n}, \mathrm{q}][\mathrm{n}-1, \mathrm{q}]\right\} \phi_{\mathrm{n}-1}\left|\mathrm{a}_{\mathrm{n}}\right|}{|\mathrm{B}-\mathrm{A}|-\sum_{\mathrm{n}=2}^{\infty}\left\{(\mathrm{B}+1)\{[\mathrm{n}, \mathrm{q}]+\gamma[\mathrm{n}, \mathrm{q}][\mathrm{n}-1, \mathrm{q}]\}-(\mathrm{A}+1)\left\{(1-\gamma) \mathrm{u}_{\mathrm{n}}+\gamma[\mathrm{n}, \mathrm{q}] \mathrm{u}_{\mathrm{n}}\right\}\right\} \phi_{\mathrm{n}-1}\left|\mathrm{a}_{\mathrm{n}}\right|}$
$<1$ by (13)
When $\mathrm{q} \rightarrow 1$ and $\gamma=0$ we have,

## Corollary 11.

A function $f \in A$ and of the form (1) is in the class $k-\mathrm{US}_{\mathrm{q}}(\lambda, \mathrm{A}, \mathrm{B}, \mathrm{t})$, if it satisfies the condition,

$$
\sum_{\mathrm{n}=2}^{\infty}\left\{2(\mathrm{k}+1)\left(\mathrm{u}_{\mathrm{n}}-\mathrm{n}\right)+\left|\mathrm{n}(\mathrm{~B}+1)-\mathrm{u}_{\mathrm{n}}(\mathrm{~A}+1)\right|\right\} \phi_{\mathrm{n}-1}\left|\mathrm{a}_{\mathrm{n}}\right| \leq|\mathrm{B}-\mathrm{A}|
$$

When $\mathrm{q} \rightarrow 1$ and $\gamma=1$ we have,

## Corollary 12.

A function $f \in A$ and of the form (1) is in the class $k-\mathrm{UC}_{\mathrm{q}}(\lambda, \mathrm{A}, \mathrm{B}, \mathrm{t})$, if it satisfies the condition,

$$
\sum_{\mathrm{n}=2}^{\infty}\left\{2(\mathrm{k}+1)\left\{\mathrm{n}\left(\mathrm{u}_{\mathrm{n}}-1\right)-\mathrm{n}(\mathrm{n}-1)\right\}+\left|(\mathrm{B}+1) \mathrm{n}^{2}-\mathrm{nu}_{\mathrm{n}}(\mathrm{~A}+1)\right|\right\} \phi_{\mathrm{n}-1}\left|\mathrm{a}_{\mathrm{n}}\right| \leq|\mathrm{B}-\mathrm{A}|
$$

## Theorem 13.

If $f(z) \in k-U S_{q}(\lambda, A, B, \gamma, t)$, and is of the form (1). then

$$
\begin{equation*}
\left|\mathrm{a}_{\mathrm{n}}\right| \leq \prod_{\mathrm{j}=0}^{\mathrm{n}-2}\left\{\frac{\left|\mathrm{M}_{1}(\mathrm{~A}-\mathrm{B}) \mathrm{u}_{\mathrm{j}+1}\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\}-2\left[\{1+\gamma[\mathrm{j}, \mathrm{q}]\}[\mathrm{j}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\} \mathrm{u}_{\mathrm{j}+1}\right] \mathrm{B}\right|}{2\left[\{1+\gamma[\mathrm{j}+1, \mathrm{q}]\}[\mathrm{j}+2, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+2, \mathrm{q}]\} \mathrm{u}_{\mathrm{j}+2}\right] \phi_{\mathrm{n}-1}}\right\}, \mathrm{n} \geq 2 \tag{14}
\end{equation*}
$$

where $\mathrm{M}_{1}(\mathrm{k})$ is defined by (3)

## Proof.

Let

$$
\begin{equation*}
\frac{(1-t)\left(z_{q} R_{q}^{\lambda} f(z)+\gamma z^{2} \partial_{\mathrm{q}}^{2} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})\right)}{(1-\gamma)\left(\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})-\mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{tz})\right)+\gamma \mathrm{z}\left(\partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{z})-\mathrm{t} \partial_{\mathrm{q}} \mathrm{R}_{\mathrm{q}}^{\lambda} \mathrm{f}(\mathrm{tz})\right)}=\mathrm{p}(\mathrm{z}) \tag{15}
\end{equation*}
$$

then

$$
\begin{aligned}
\mathrm{p}(\mathrm{z}) & \prec \mathrm{q}_{\mathrm{k}}(\mathrm{z}) \\
& =\left[(\mathrm{A}+1) \mathrm{p}_{\mathrm{k}}(\mathrm{z})-(\mathrm{A}-1)\right]\left[(\mathrm{B}+1) \mathrm{p}_{\mathrm{k}}(\mathrm{z})-(\mathrm{B}-1)\right]^{-1} \\
& =\frac{(\mathrm{A}-1)}{(\mathrm{B}-1)}+\left(\frac{(\mathrm{A}-1)(\mathrm{B}+1)}{(\mathrm{B}-1)^{2}}-\frac{(\mathrm{A}+1)}{(\mathrm{B}-1)}\right)\left(\mathrm{p}_{\mathrm{k}}(\mathrm{z})\right)+\left(\frac{(\mathrm{A}-1)(\mathrm{B}+1)^{2}}{(\mathrm{~B}-1)^{3}}-\frac{(\mathrm{A}+1)(\mathrm{B}+1)}{(\mathrm{B}-1)^{2}}\right)\left(\mathrm{p}_{\mathrm{k}}(\mathrm{z})\right)^{2}+\cdots
\end{aligned}
$$

By taking $p_{k}(z)=1+M_{1}(k) z+M_{2}(k) z^{2}+\cdots$
after some simplification, we obtain,

$$
\mathrm{p}(\mathrm{z}) \prec \sum_{\mathrm{n}=1}^{\infty} \frac{-2(B+1)^{\mathrm{n}-1}}{(B-1)^{\mathrm{n}}}+\left\{\sum_{\mathrm{n}=1}^{\infty} \frac{-2 \mathrm{n}(\mathrm{~A}-B)(B+1)^{\mathrm{n}-1}}{(B-1)^{\mathrm{n}+1}}\right\} M_{1}(k)+\cdots
$$

Now we see that the series $\sum_{n=1}^{\infty} \frac{-2(B+1)^{n-1}}{(B-1)^{n}}$ and $\sum_{n=1}^{\infty} \frac{-2 n(A-B)(B+1)^{n-1}}{(B-1)^{n+1}}$
are convergent and converge to 1 and $\frac{A-B}{2}$ respectively. Therefore,
$\mathrm{p}(\mathrm{z}) \prec 1+\frac{\mathrm{A}-\mathrm{B}}{2} \mathrm{M}_{1}(\mathrm{k}) \mathrm{z}+\cdots$
Now if $\mathrm{p}(\mathrm{z})=1+\sum_{\mathrm{n}=1}^{\infty} \mathrm{c}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}}$, then by lemma [6], we have

$$
\begin{equation*}
\left|\mathrm{c}_{\mathrm{n}}\right| \leq \frac{\mathrm{A}-\mathrm{B}}{2} \mathrm{M}_{1}(\mathrm{k}), \quad \mathrm{n} \geq 1 \tag{16}
\end{equation*}
$$

Now from (15) we have

$$
(1-t)\left[\partial_{q} R_{q}^{\lambda} f(z)+\gamma z^{2} \partial_{q}^{2} R_{q}^{\lambda} f(z)\right]=\left[(1-\gamma)\left(R_{q}^{\lambda} f(z)-R_{q}^{\lambda} f(t z)\right)+\gamma z\left(\partial_{q} R_{q}^{\lambda} f(z)-t \partial_{q} R_{q}^{\lambda} f(t z)\right)\right] p(z)
$$

by simple calculation provides us,

$$
\begin{gather*}
\left|a_{n}\right| \leq \frac{\sum_{j=1}^{n-1}[(1-\gamma)+\gamma[j, q]] u_{j} \phi_{j-1}\left|a_{j}\right|\left|c_{n-j}\right|}{\left[\{1+\gamma[n-1, q]\}[n, q]-\{(1-\gamma)+\gamma[n, q]\} u_{n}\right] \phi_{n-1}}, \quad a_{1}=1 \\
\left|a_{n}\right| \leq \frac{(A-B)\left|M_{1}(k)\right| \sum_{j=1}^{n-1}[(1-\gamma)+\gamma[j, q]] u_{j} \phi_{j-1}\left|a_{j}\right|}{2\left[\{1+\gamma[n-1, q]\}[n, q]-\{(1-\gamma)+\gamma[n, q]\} u_{n}\right] \phi_{n-1}}, \quad a_{1}=1 \tag{17}
\end{gather*}
$$

Now we prove that

$$
\begin{align*}
& \frac{(\mathrm{A}-\mathrm{B})\left|\mathrm{M}_{1}(\mathrm{k})\right| \sum_{\mathrm{j}=1}^{\mathrm{n}-1}[(1-\gamma)+\gamma[\mathrm{j}, \mathrm{q}]] \mathrm{u}_{\mathrm{j}} \phi_{\mathrm{j}-1}\left|\mathrm{a}_{\mathrm{j}}\right|}{2\left[\{1+\gamma[\mathrm{n}-1, \mathrm{q}]\}[\mathrm{n}, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{n}, \mathrm{q}]\} \mathrm{u}_{\mathrm{n}}\right] \phi_{\mathrm{n}-1}} \\
& \leq \prod_{\mathrm{j}=0}^{\mathrm{n}-2}\left\{\frac{\left|\mathrm{M}_{1}(\mathrm{k})(\mathrm{A}-\mathrm{B}) \mathrm{u}_{\mathrm{j}+1}\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\}-2\left[\{1+\gamma[\mathrm{j}, \mathrm{q}]\}[\mathrm{j}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\} \mathrm{u}_{\mathrm{j}+1}\right] \mathrm{B}\right|}{2\left[\{1+\gamma[\mathrm{j}+1, \mathrm{q}]\}[\mathrm{j}+2, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+2, \mathrm{q}]\} \mathrm{u}_{\mathrm{j}+2}\right] \phi_{\mathrm{n}-1}}\right\} \tag{18}
\end{align*}
$$

For this we use the induction method
For $n=2$ From (17), we have

$$
\left|\mathrm{a}_{2}\right| \leq \frac{(\mathrm{A}-\mathrm{B})\left|\mathrm{M}_{1}(\mathrm{k})\right|}{2\left[(1+\gamma)[2, \mathrm{q}]-\{(1-\gamma)+\gamma[2, \mathrm{q}]\} \mathrm{u}_{2}\right] \phi_{1}}
$$

From (14) we have

$$
\left|\mathrm{a}_{2}\right| \leq \frac{(\mathrm{A}-\mathrm{B})\left|\mathrm{M}_{1}(\mathrm{k})\right|}{2\left[(1+\gamma)[2, \mathrm{q}]-\{(1-\gamma)+\gamma[2, \mathrm{q}]\} \mathrm{u}_{2}\right] \phi_{1}}
$$

For n=3 From (17) we have

$$
\begin{aligned}
\left|\mathrm{a}_{3}\right| \leq & \frac{(\mathrm{A}-\mathrm{B})\left|\mathrm{M}_{1}\right|}{2\left[\{1+\gamma[2, \mathrm{q}]\}[3, \mathrm{q}]-\{(1-\gamma+\gamma[3, \mathrm{q}])\} \mathrm{u}_{3}\right] \phi_{2}} \\
& \left(\frac{\left|\mathrm{M}_{1}(\mathrm{k})\right|(\mathrm{A}-\mathrm{B}) \mathrm{u}_{2}[(1-\gamma)+\gamma[2, \mathrm{q}]]+2\left[(1+\gamma)[2, \mathrm{q}]-\{(1-\gamma)+\gamma[2, \mathrm{q}]\} \mathrm{u}_{2}\right]}{2\left[(1+\gamma)[2, \mathrm{q}]-\{(1-\gamma)+\gamma[2, \mathrm{q}]\} \mathrm{u}_{2}\right]}\right)
\end{aligned}
$$

from (14) we have

$$
\begin{aligned}
\left|\mathbf{a}_{3}\right| \leq & \frac{(\mathrm{A}-\mathrm{B})\left|\mathrm{M}_{1}\right|}{2\left[(1+\gamma)[2, \mathrm{q}]-\{(1-\gamma)+\gamma[2, \mathrm{q}]\} \mathrm{u}_{2}\right] \phi_{2}} \\
& \left(\frac{\left|\mathbf{M}_{1}(\mathrm{k})\right|(\mathrm{A}-\mathrm{B}) \mathrm{u}_{2}[(1-\gamma)+\gamma[2, \mathrm{q}]]+2\left[(1+\gamma)[2, \mathrm{q}]-\{(1-\gamma)+\gamma[2, \mathrm{q}]\} \mathrm{u}_{2}\right]}{2\left[\{1+\gamma[2, \mathrm{q}]\}[3, \mathrm{q}]-\{(1-\gamma)+\gamma[3, \mathrm{q}]\} \mathrm{u}_{3}\right]}\right)
\end{aligned}
$$

Let the hypothesis be true for $\mathrm{n}=\mathrm{m}$ from (16) we have,

$$
\left|\mathbf{a}_{\mathrm{m}}\right| \leq \frac{(\mathrm{A}-\mathrm{B})\left|\mathbf{M}_{1}(\mathrm{k})\right| \sum_{\mathrm{j}=1}^{\mathrm{m}-1}[(1-\gamma)+\gamma[\mathrm{j}, \mathrm{q}]] \mathbf{u}_{\mathrm{j}} \phi_{\mathrm{j}-1}\left|\mathbf{a}_{\mathrm{j}}\right|}{2\left[\{1+\gamma[\mathrm{m}-1, \mathrm{q}]\}[\mathrm{m}, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{m}, \mathrm{q}]\} \mathbf{u}_{\mathrm{m}}\right] \phi_{\mathrm{m}-1}}, \quad \mathbf{a}_{1}=1
$$

From(14) we have

$$
\left|\mathrm{a}_{\mathrm{m}}\right| \leq \prod_{\mathrm{j}=0}^{\mathrm{m}-2}\left\{\frac{\left|\mathbf{M}_{1}\right|(\mathrm{A}-\mathbf{B}) \mathbf{u}_{\mathrm{j}+1}\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\}+2\left[\{1+\gamma[\mathrm{j}, \mathrm{q}]\}[\mathrm{j}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\} \mathbf{u}_{\mathrm{j}+1}\right]}{2\left[\{1+\gamma[\mathrm{j}+1, \mathrm{q}]\}[\mathrm{j}+2, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+2, \mathrm{q}]\} \mathrm{u}_{\mathrm{j}+2}\right] \phi_{\mathrm{m}-1}}\right\}
$$

By induction hypothesis, we have

$$
\begin{align*}
& \quad \frac{(\mathrm{A}-\mathrm{B})\left|\mathbf{M}_{1}(\mathrm{k})\right| \sum_{\mathrm{j}=1}^{\mathrm{m}-1}[(1-\gamma)+\gamma[\mathrm{j}, \mathrm{q}]] \mathrm{u}_{\mathrm{j}} \phi_{\mathrm{j}-1}\left|\mathrm{a}_{\mathrm{j}}\right|}{2\left[\{1+\gamma[\mathrm{m}-1, \mathrm{q}]\}[\mathrm{m}, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{m}, \mathrm{q}]\} \mathrm{u}_{\mathrm{m}}\right] \phi_{\mathrm{m}-1}} \\
& \leq \prod_{\mathrm{j}=0}^{\mathrm{m}-2}\left\{\frac{\left|\mathrm{M}_{1}\right|(\mathrm{A}-\mathrm{B}) \mathrm{u}_{\mathrm{j}+1}\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\}+2\left[\{1+\gamma[\mathrm{j}, \mathrm{q}]\}[\mathrm{j}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\} \mathrm{u}_{\mathrm{j}+1}\right]}{2\left[\{1+\gamma[\mathrm{j}+1, \mathrm{q}]\}[\mathrm{j}+2, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+2, \mathrm{q}]\} \mathrm{u}_{\mathrm{j}+2}\right] \phi_{\mathrm{m}-1}}\right\}
\end{align*}
$$

Multiplying both sides (19) by

$$
\frac{\left|\mathbf{M}_{1}\right|(\mathrm{A}-\mathbf{B}) \mathbf{u}_{\mathrm{m}}\{(1-\gamma)+\gamma[\mathrm{m}, \mathrm{q}]\}+2\left[\{1+\gamma[\mathrm{m}-1, \mathrm{q}]\}[\mathrm{m}, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{m}, \mathrm{q}]\} \mathrm{u}_{\mathrm{m}}\right]}{2\left[\{1+\gamma[\mathrm{m}, \mathrm{q}]\}[\mathrm{m}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{m}+1, \mathrm{q}]\} \mathrm{u}_{\mathrm{m}+1}\right]}
$$

we have

$$
\prod_{j=0}^{\mathrm{m}-2}\left\{\frac{\left|\mathbf{M}_{1}\right|(A-B) \mathbf{u}_{\mathrm{j}+1}\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\}+2\left[\{1+\gamma[\mathrm{j}, \mathrm{q}]\}[\mathrm{j}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\} \mathbf{u}_{\mathrm{j}+1}\right]}{2\left[\{1+\gamma[\mathrm{j}+1, \mathrm{q}]\}[\mathrm{j}+2, \mathrm{q}]-\{(1-\gamma)+\gamma[j+2, \mathrm{q}]\} \mathbf{u}_{\mathrm{j}+2}\right] \phi_{\mathrm{m}-1}}\right\}
$$

$$
\begin{aligned}
& \geq \frac{\left|\mathbf{M}_{1}\right|(\mathrm{A}-\mathbf{B}) \mathbf{u}_{\mathrm{m}}\{(1-\gamma)+\gamma[\mathrm{m}, \mathrm{q}]\}+2\left[\{1+\gamma[\mathrm{m}-1, \mathrm{q}]\}[\mathrm{m}, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{m}, \mathrm{q}]\} \mathrm{u}_{\mathrm{m}}\right]}{2\left[\{1+\gamma[\mathrm{m}, \mathrm{q}]\}[\mathrm{m}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{m}+1, \mathrm{q}]\} \mathbf{u}_{\mathrm{m}+1}\right]} \\
& \quad \times\left\{\begin{array}{c}
\left(\mathrm{a}_{\mathrm{m}} \left\lvert\, \leq \frac{(\mathrm{A}-\mathbf{B})\left|\mathbf{M}_{1}(\mathrm{k})\right| \sum_{\mathrm{j}=1}^{\mathrm{m}-1}[(1-\gamma)+\gamma[\mathrm{j}, \mathrm{q}]] \mathrm{u}_{\mathrm{j}} \phi_{\mathrm{j}-1}\left|\mathrm{a}_{\mathrm{j}}\right|}{2\left[\{1+\gamma[\mathrm{m}-1, \mathrm{q}]\}[\mathrm{m}, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{m}, \mathrm{q}]\} \mathbf{u}_{\mathrm{m}}\right] \phi_{\mathrm{m}-1}}\right.\right\}
\end{array}\right\} \\
& =\frac{(\mathrm{A}-\mathbf{B})\left|\mathbf{M}_{1}\right|}{2\left[\{1+\gamma[\mathrm{m}, \mathrm{q}]\}[\mathrm{m}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{m}+1, \mathrm{q}]\} \mathrm{u}_{\mathrm{m}+1}\right] \phi_{\mathrm{m}-1}} \\
& =\frac{\left[\sum_{\mathrm{j}=1}^{\mathrm{m}-1}[(1-\gamma)+\gamma[\mathrm{j}, \mathrm{q}]] \phi_{\mathrm{j}-1}\left|\mathrm{a}_{\mathrm{j}}\right|+\mathbf{u}_{\mathrm{m}}\{(1-\gamma)+\gamma[\mathrm{m}, \mathrm{q}]\} \phi_{\mathrm{m}-1}\left|\mathrm{a}_{\mathrm{m}}\right|\right]}{2\left[\{1+\gamma[\mathrm{m}, \mathrm{q}]\}[\mathrm{m}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{m}+1, \mathrm{q}]\} \mathbf{u}_{\mathrm{m}+1}\right] \phi_{\mathrm{m}-1}} \\
& \quad \times \sum_{\mathrm{j}=1}^{\mathrm{m}}[(1-\gamma)+\gamma[\mathrm{j}, \mathrm{q}]] \phi_{\mathrm{j}-1}\left|\mathrm{a}_{\mathrm{j}}\right|
\end{aligned}
$$

That is

$$
\begin{aligned}
& \quad \frac{(\mathrm{A}-\mathrm{B})\left|\mathrm{M}_{1}(\mathrm{k})\right| \sum_{\mathrm{j}=1}^{\mathrm{m}-1}[(1-\gamma)+\gamma[\mathrm{j}, \mathrm{q}]] \mathrm{u}_{\mathrm{j}} \phi_{\mathrm{j}-1}\left|\mathrm{a}_{\mathrm{j}}\right|}{2\left[\{1+\gamma[\mathrm{m}, \mathrm{q}]\}[\mathrm{m}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{m}+1, \mathrm{q}]\} \mathrm{u}_{\mathrm{m}+1}\right] \phi_{\mathrm{m}-1}} \\
& \leq \prod_{\mathrm{j}=0}^{\mathrm{m}-2}\left\{\frac{\left|\mathrm{M}_{1}\right|(\mathrm{A}-\mathrm{B}) \mathrm{u}_{\mathrm{j}+1}\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\}+2\left[\{1+\gamma[\mathrm{j}, \mathrm{q}]\}[\mathrm{j}+1, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+1, \mathrm{q}]\} \mathrm{u}_{\mathrm{j}+1}\right]}{2\left[\{1+\gamma[\mathrm{j}+1, \mathrm{q}]\}[\mathrm{j}+2, \mathrm{q}]-\{(1-\gamma)+\gamma[\mathrm{j}+2, \mathrm{q}]\} \mathrm{u}_{\mathrm{j}+2}\right] \phi_{\mathrm{m}-1}}\right\}
\end{aligned}
$$

Which gives (19).
When $\mathrm{q} \rightarrow 1$ and $\gamma=0$ we have,

## Corollary 14.

A function $f \in A$ and of the form (1) is in $k-\mathrm{US}_{\mathrm{q}}(\lambda, \mathrm{A}, \mathrm{B}, \mathrm{t})$, if,

$$
\left|\mathrm{a}_{\mathrm{n}}\right| \leq \prod_{\mathrm{j}=0}^{\mathrm{n}-2}\left(\frac{\left|\mathrm{M}_{1}(\mathrm{k})(\mathrm{A}-\mathrm{B}) \mathrm{u}_{\mathrm{j}+1}-2\left[\mathrm{j}+1-\mathrm{u}_{\mathrm{j}+1}\right] \mathrm{B}\right|}{2\left[\mathrm{j}+2-\mathrm{u}_{\mathrm{j}+2}\right] \phi_{\mathrm{n}-1}}\right)
$$

is satisfied.
When $\mathrm{q} \rightarrow 1$ and $\gamma=1$ we have,

## Corollary 15.

A function $f \in A$ and of the form (1) is said to be in the class $k-\mathrm{UC}_{q}(\lambda, A, B, t)$, if,

$$
\left|\mathrm{a}_{\mathrm{n}}\right| \leq \prod_{\mathrm{j}=0}^{\mathrm{n}-2}\left(\frac{\left|\mathrm{M}_{1}(\mathrm{k})(\mathrm{A}-\mathrm{B})(\mathrm{j}+1)-2(\mathrm{j}+1)\left[1+\mathrm{j}-\mathrm{u}_{\mathrm{j}+1}\right] \mathrm{B}\right|}{2(\mathrm{j}+2)\left[2+\mathrm{j}-\mathrm{u}_{\mathrm{j}+2}\right] \phi_{\mathrm{n}-1}}\right)
$$

is true.

## Theorem 16.

Let $-1 \leq \mathrm{B}<\mathrm{A} \leq 1$ and $\mathrm{t}=0,0 \leq \mathrm{k}<\infty$ be fixed and let $\mathrm{f}(\mathrm{z}) \in \mathrm{k}-\mathrm{US}_{\mathrm{q}}(\lambda, \mathrm{A}, \mathrm{B}, \gamma, \mathrm{t})$ and is of the form (1) then for a complex number $\mu$

where

$$
\begin{align*}
& \delta_{1}=\frac{\left(\phi_{1}\right)^{2}\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}}{\phi_{2}(\mathrm{~A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\}}\left\{\left\{2+2 \mathrm{E}(\mathrm{k})-(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})\right\}\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}+(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k}) \mathrm{Ru}_{2}\right\}  \tag{21}\\
& \delta_{2}=\frac{\left(\phi_{1}\right)^{2}\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}}{\phi_{2}(\mathrm{~A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\}}\left\{\left\{2 \mathrm{E}(\mathrm{k})-(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})-2\right\}\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}+(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k}) \mathrm{Ru}_{2}\right\} \tag{22}
\end{align*}
$$

and

$$
\begin{array}{rr}
\mathrm{P}=(1+\gamma)[2, \mathrm{q}] & \mathrm{Q}=(1+\gamma[2, \mathrm{q}])[3, \mathrm{q}] \\
\mathrm{R}=(1-\gamma)+\gamma[2, \mathrm{q}] & \mathrm{S}=(1-\gamma)+\gamma[3, \mathrm{q}]
\end{array}
$$

and $\mathrm{M}_{1}(\mathrm{k}), \mathrm{E}(\mathrm{k})$ are defined in (3) and (4)

## Proof.

If $\mathrm{f}(\mathrm{z}) \in \mathrm{k}-\mathrm{US}_{\mathrm{q}}(\lambda, \mathrm{A}, \mathrm{B}, \gamma, \mathrm{t})$ then it follows that

$$
\begin{align*}
& \frac{(1-t)\left(\partial_{q} R_{q}^{\lambda} f(z)+\gamma z^{2} \partial_{\mathrm{q}}^{2} R_{q}^{\lambda} f(z)\right)}{(1-\gamma)\left(R_{q}^{\lambda} f(z)-R_{q}^{\lambda} f(t z)\right)+\gamma z\left(\partial_{q} R_{q}^{\lambda} f(z)-t \partial_{q} R_{q}^{\lambda} f(t z)\right)} \prec q_{k}(z)  \tag{23}\\
& =1+\frac{(A-B)}{2} M_{1}(k) z+\frac{\left\{2 E(k)-(1+B) M_{1}(k)\right\}(A-B)}{4} M_{1}(k) z^{2}+\cdots
\end{align*}
$$

Now by the definition of subordination there exists a function $\omega$ analytic in D with $\omega(0)=0$ and $|\omega(\mathrm{z})|<1$ such that

$$
\begin{align*}
& \frac{(1-t)\left(z_{q} R_{q}^{\lambda} f(z)+\gamma z^{2} \partial_{\mathrm{q}}^{2} R_{q}^{\lambda} f(z)\right)}{(1-\gamma)\left(R_{q}^{\lambda} f(z)-R_{q}^{\lambda} f(t z)\right)+\gamma z\left(\partial_{q} R_{q}^{\lambda} f(z)-t \partial_{q} R_{q}^{\lambda} f(t z)\right)}  \tag{24}\\
& =1+\frac{(A-B)}{2} M_{1}(k) \omega(z)+\frac{\left\{2 E(k)-(1+B) M_{1}(k)\right\}(A-B)}{4} M_{1}(k) \omega^{2}(z)+\cdots
\end{align*}
$$

Now from lemma 8, equation (23) and equation (24), We have

$$
\mathrm{a}_{2}=\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k}) \mathrm{c}_{1}}{2\left[\mathrm{P}-\mathrm{Ru}_{2}\right] \phi_{1}}
$$

and

$$
\begin{gather*}
\mathrm{a}_{3}=\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left[\mathrm{Q}-\mathrm{Su}_{3}\right] \phi_{2}}\left\{\mathrm{c}_{2}+\left(\frac{\left[2 \mathrm{E}(\mathrm{k})-(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})\right]}{2}+\frac{\mathrm{Ru}_{2}(\mathrm{~A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left[\mathrm{P}-\mathrm{Ru}_{2}\right]}\right) \mathrm{c}_{1}^{2}\right\} \\
\left.\left|\mathrm{a}_{3}-\mu \mathrm{a}_{2}^{2}\right|=\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}} \left\lvert\, \mathrm{c}_{2}+\left\{\frac{2 \mathrm{E}(\mathrm{~K})-(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2}+\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}}\left(\mathrm{Ru}_{2}-\frac{\mu\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}{\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}\left(\phi_{1}\right)^{2}}\right)\right\} \mathrm{c}_{1}^{2}\right.\right\}, \tag{25}
\end{gather*}
$$

which gives

$$
\begin{equation*}
\left|\mathrm{a}_{3}-\mu \mathrm{a}_{2}^{2}\right|=\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}\left|\mathrm{c}_{2}-\mathrm{c}_{1}^{2}+\left\{1+\frac{2 \mathrm{E}(\mathrm{~K})-(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2}+\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}}\left(\mathrm{Ru}_{2}-\frac{\mu\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}{\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}\left(\phi_{1}\right)^{2}}\right)\right\} \mathrm{c}_{1}^{2}\right|, \tag{26}
\end{equation*}
$$

Suppose that $\mu>\delta_{1}$ then using the estimates $\left|c_{2}-c_{1}^{2}\right| \leq 1$ from lemma 8 and the well known estimate $\left|c_{1}\right| \leq 1$ of the Schewarz lemma, we obtain

$$
\begin{equation*}
\left|\mathrm{a}_{3}-\mu \mathrm{a}_{2}^{2}\right| \leq \frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}\left|2+\frac{2 \mathrm{E}(\mathrm{k})-(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2}+\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}}\left(\mathrm{Ru}_{2}-\frac{\mu\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}{\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}\left(\phi_{1}\right)^{2}}\right)\right| \tag{27}
\end{equation*}
$$

The inequality (27) is our required assertion (20) for $\mu>\delta_{1}$ on other hand if $\mu<\delta_{2}$ then (25) gives, $\left|\mathrm{a}_{3}-\mu \mathrm{a}_{2}^{2}\right| \leq \frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}\left[\left|\mathrm{c}_{2}\right|+\left\{\frac{2 \mathrm{E}(\mathrm{k})-(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2}+\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}}\left(\mathrm{Ru}_{2}-\frac{\mu\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}{\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}\left(\phi_{1}\right)^{2}}\right)\right\}\left|\mathrm{c}_{1}^{2}\right|\right]$,

Applying the estimates $\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$ of lemma 8 and $\left|c_{1}\right| \leq 1$, We have

$$
\left|\mathrm{a}_{3}-\mu \mathrm{a}_{2}^{2}\right| \leq \frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}\left[\frac{2 \mathrm{E}(\mathrm{~K})-(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2}+\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}}\left(\mathrm{Ru}_{2}-\frac{\mu\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}{\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}\left(\phi_{1}\right)^{2}}\right)\right]
$$

This is last inequality in (20). Finally if $\delta_{1}<\mu<\delta_{2}$ then

$$
\left|\frac{2 \mathrm{E}(\mathrm{k})-(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2}+\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}}\left(\mathrm{Ru}_{2}-\frac{\mu\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}{\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}\left(\phi_{1}\right)^{2}}\right)\right| \leq 1
$$

Therefore (25) yields

$$
\begin{gathered}
\left|\mathrm{a}_{3}-\mu \mathrm{a}_{2}^{2}\right| \leq \frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}\left\{\mathrm{c}_{2}\left|+\left|\mathrm{c}_{1}\right|^{2}\right\}\right. \\
\left|\mathrm{a}_{3}-\mu \mathrm{a}_{2}^{2}\right| \leq \frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}\left\{1-\left|\mathrm{c}_{2}\right|+\left|\mathrm{c}_{1}\right|^{2}\right\} \\
\left|\mathrm{a}_{3}-\mu \mathrm{a}_{2}^{2}\right| \leq \frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}
\end{gathered}
$$

We get the middle inequality in(20). This completes the proof.

## Theorem 17.

Let $\leq \mathrm{k}<\infty,-1 \leq \mathrm{B}<\mathrm{A} \leq 1$ and $\mathrm{t}=0$ be fixed and let $\mathrm{f}(\mathrm{z}) \in \mathrm{k}-\mathrm{US}_{\mathrm{q}}(\lambda, \mathrm{A}, \mathrm{B}, \gamma, \mathrm{t})$ and is of the form (1). Then for a complex number $\mu$

$$
\left|\mathrm{a}_{3}-\mu \mathrm{a}_{2}^{2}\right| \leq \frac{(\mathrm{A}-\mathrm{B})\left|\mathrm{M}_{1}(\mathrm{k})\right|}{\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}} \max \{1,|2 v-1|\}
$$

where v is given by (31)

## Proof.

From (25) we have

$$
\begin{align*}
\mid \mathrm{a}_{3} & \left.-\mu \mathrm{a}_{2}^{2}\left|=\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}\right| \mathrm{c}_{2}-\left\{\frac{(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})-2 \mathrm{E}(\mathrm{k})}{2}-\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}}\left(\mathrm{Ru}_{2}-\frac{\mu\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}{\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}\left(\phi_{1}\right)^{2}}\right)\right\} \mathrm{c}_{1}^{2} \right\rvert\, \\
& =\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}\left|\mathrm{c}_{2}-\mathrm{vc}_{1}^{2}\right| \tag{29}
\end{align*}
$$

where

$$
\begin{equation*}
v=\frac{(1+\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})-2 \mathrm{E}(\mathrm{k})}{2}-\frac{(\mathrm{A}-\mathrm{B}) \mathrm{M}_{1}(\mathrm{k})}{2\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}}\left(\mathrm{Ru}_{2}-\frac{\mu\left\{\mathrm{Q}-\mathrm{Su}_{3}\right\} \phi_{2}}{\left\{\mathrm{P}-\mathrm{Ru}_{2}\right\}\left(\phi_{1}\right)^{2}}\right) \tag{31}
\end{equation*}
$$

Applying the lemma 7 on the equation (30), we obtain the required result.

## References

[1] N.I. Ahiezer, "Elements of theory of elliptic functions", Moscow, 1970.
[2] S. Hussain, S. Khan, M.A. Zaighum and M.Darus, "Certain subclass of analytic functions related with conic domains and associated with salagean q-differential operator", AIMS Math.,vol.2, no. 4, pp. 622634, 2017.
[3] S.Hussain, S. Khan, M.A. Zaighum, M.Darus and Z.Shareef, "Coefficient Bounds for Certain Subclass of Biunivalent Functions Associated with Rucheweyh q-differential Operator", J. Complex Anal., 2017 (2017).
[4] W. Janowski, "Some extremal problems for certain families of analytic functions", Ann. Polon.Math., vol. 28, pp. 297-326, 1973.
[5] S. Kanas and A.Wisniowska, "Conic regions and k-uniform convexity", J. Comput. Appl. Math.,vol. 105, pp. 327-336, 1999.
[6] S. Kanas and A. Wisniowska, "Conic domains and starlike functions", Rev. RoumaineMath.Pures Appl., vol. 45, pp. 647-657, 2000.
[7] S.Kanas and D. Raducanu, "Some classes of analytic functions related to conic domains", Math.slovaca, vol. 64, no. 5, pp. 1183-1196, 2014.
[8] F.R. Keogh and E.P. Merkes, "A coefficient inequality for certain classes of analytic functions", Proc. Amer. Math. Soc., vol. 20, pp. 8-12, 1969.
[9] N. Khan, B. Khan, Q.Z. Ahmad and S.Ahmad, "Some Convolution properties of Multivalent Analytic Functions",AIMS Math., vol. 2, no. 2, pp. 260-268, 2017.
[10] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions. In: Proc. of the Conference on Complex Analysis (Tianjin), 1992 (Z. Li, F.Y.Ren, L.Yang, S.Y. Zhang,eds.), Conf. Proc.Lecture Notes Anal., Int. Press, Massachusetts, vol 1, pp. 157-169, 1994.
[11] K.I. Noor and S.N. Malik, "On coefficient inequalities of functions associated with conic domains", Comput. Math. Appl., vol. 62, pp. 2209-2217, 2011.
[12] K.I. Noor, J. Sokol and Q.Z. Ahmad, "Applications of conic type regions to subclasses of meromorphicunivalent functions with respect to symmetric points", Rev. R. Acad. Cienc. Exactas Fs.Nat., Ser. A Mat.,vol. 111, pp. 947C958, 2017.
[13] K.I. Noor, J. Sokol and Q.Z. Ahmad, "Applications of the differential operator to a class of meromorphic univalent functions",J. Egyptian Math. Soc., vol. 24, no. 2, pp. 181-186, 2016.
[14] M. Nunokawa, S. Hussain, N.Khan and Q.Z. Ahmad, "A subclass of analytic functions related with conic domain", J. Clas. Anal.,vol. 9, pp. 137-149, 2016.
[15] W.Rogosinski, "On the coefficient of subordinate functions", Proc. Lond. Math. Soc., vol. 48, pp. 48-82, 1943.
[16] S.T. Rucheweyh, "New criteria for univalent functions", Proc. Amer. Math. Soc., vol. 49, pp. 109-115, 1975.
[17] H. Silverman, "Univalent functions with negative coefficient", Proc. Amer. Math. Soc., vol. 51, pp. 109116, 1975.
[18] S. Shams, S. R. Kulkarni and J.M. Jahangiri, "Classes of uniformly starlike and convex functions", Int. J. Math. Sci., vol. 55, pp. 2959-2961, 2004.
[19] S. Khaan, S. Hussain, M.S. Zhaighum and M. Mumtaz Khan, "New subclass of analytic functions in conical domain associated with Rucheweyh q-differential operator", IJAA, vol. 16, no. 2, pp. 239-253, 2018.
[20] G. Saravanan, Muthunagai. K, "Coefficient Estimates and Fekete- Szegő Inequality for a Subclass of Bi-Univalent Functions Defined by Symmetric Q-Derivative Operatorby Using Faber Polynomial Techniques", " Periodicals of Engineering and Natural Sciences, Vol.6, No.1, June 2018, pp. 241~250.
[21] N.P. Damodaran , SruthaKeerthi.B, "Coefficient bounds for a subclass of Sakaguchi type functions using Chebyshev Polynomial", "Periodicals of Engineering and Natural Sciences, Vol.6, No.1, June 2018, pp. 296-304.
[22] P. Murugabharathi, B. SruthaKeerthi , "Designing Filter for Certain Subclasses ofAnalytic Univalent Functions"," Periodicals of Engineering and Natural Sciences,Vol.6, No.1, June 2018, pp. 274~284
[23] Migdat I. Hodžić "Uncertainty Balance Principle"PERIODICALS OF ENGINEERING AND NATURAL SCIENCES Vol. 4 No. 2 (2016).
[24] Narayanan Venkateswaran "Efficient read monotonic data aggregation across shards on the cloud" Periodicals of Engineering and Natural Sciences Vol.7, No.1, June 2019, pp.125-140.

