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1. Introduction 

Let A denotes the class of functions of the form 

 

 






2n

n
nzazf(z)       (1) 

 

which are analytic in the open unit disk D = {z C : |z| <1}.  If f and g are analytic function in D, then 

thefunction f is said to be subordinate to g, and write f(z)  g(z), if there exists a function  analytic in D 

with(0) = 0 and |(z)| < 1 for all z D, such thatf(z) = g((z)), z D.  Moreover, if the function g 

isunivalent in D, then f(z)   g(z) if and only if f(0) =g(0) and f(D)  g(D). 

Kanas and Wisniowka [5, 6], established the conic kind of domain  k, k 0  as 

 

 

k }v1)(uu:iv{u 22  k  

 

 

We note that k is a region in the right half-plane, symmetric with respect to real axis, and contains the point 

(1,0). More precisely for k=0, 0 is the right half-plane, for 0<k<1, kis an unbounded region having 

boundary k, a rectangular hyperbola for k=1, 1 is still an unbounded region where 1 is a parabola, and 

for k>1, k is a bounded region enclosed by an ellipse. The extremalfunction for these conic regions are 
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  zD and k  (0,1)  is chosen such that  .
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  Here K() is Legendres’s 

complete elliptic integral of first kind and  )k1K(κ)(K 2 and K(t) is the complementary integral of K(t) 

for details see [1, 5, 6] and more recently [9,12,14]. If Pk(z)=1+M1(k)z+M2(k)z
2
+, 

zD, then it was shown in [6] that for (2) one can have, 

 
























1k
tt)(1(t)4K

π

1k
π

8

1k0
k1

2A

(k)M

22

2

2

2

2

1      (3) 

M2(k)= E(k) M1(k)  

where 
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with arccosk
π

2
A   

Further more a function p is said to be in the class  kP[A,B ]  if and only if  

0k(z),qp(z) k   
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      (5) 

where  pk is defined in (2) and 1  B < A  1. Geometrically the function p  kP[A,B] takes all the values 

from the domain k[A,B], 1 B < A  1, k 0, which is defined as: 

k[A, B] = { : ((c()) >k|c()|} 
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c(ω(where  

or equivalently k[A,B] is a set of numbers = u+iv  such that  
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2
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2
] 

This domain represents the conic type of regions for detail see [11]. For any n positive integer n, the q-integer 

number n, [n,q] is defined by  
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q-differential operator be defined by 

D)(z,
1)z(q

f(z)f(qz)
f(z)q 




  

It is easy to observe that for n N := {1,2,3...} and z D 

qz
n
 = [n,q]z

n1
 

Let the q-generated pochhammer symbol be defined as 

[r,q]n =[r,q][r+1,q][r+2,q]...[r+n1,q] 

and for r>0 let the q-gamma function be defined as 

q(r+1)=[r] q(r) and q(1)=1 

These kind of operators see [2,3,13], play great in GFT. Kanas et al, defined Rucheweyh q-differential 

operator as follows:  

 

Definition 1. [7] 

For the function fA is in the form (1) ,  the Rucheweyh q-differential operator is: 
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from (7) we get that 
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Using (7) and (8), the power series f(z)R λ
q  is given by  
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When q1 see[16], we observe that   
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making use of (7),  (10) and the properties of hadamard product we obtain the following equality 

 

f(z)R
q

q]λ,[
f(z)R

q

q]λ,[
1f(z))(Rz λ

qλ

1λ
qλ

λ
q 













      (11) 

If q1, the equality (11) implies 

z(R

f(z))=(1+) R

+1
f(z) R


f(z) 

which is the familiar recurrent formula for the above operator. we now defined the following classes of 

functions. 

 

Definition 2. 

A function f(z) A is said to be in the class kUSq(,A,B,t), k 0,  0,  t C with  |t|  1   

1  B <A  1, if and only if  
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Definition 3. 

A function f(z) A is said to be in the class kUCq(,A,B,t), k 0,  0, t C with |t| 1,1  B <A  1, if and 

only if  
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Definition 4. 

A function f(z) A is said to be in the class kUSq(,A,B,,t), k 0,  0,  t C with  |t|  1   

1  B <A  1, if and only if  
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Remark 5. 

It is easily see that limq 1 kUSq(0, A, B, 0, 0) = kST(A, B)  where kST(A, B) is a functions class, 

investigated by Noor and sarfraz [11] 

 

  ))((k)(( zGczGc 
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Lemma 6.[15] 

Let  
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  If H(z) is univalent in D and H(E) is convex, 

then  

|cn|  |C1|,  n 1 

 

Lemma 7. [8,10] 

If q(z)=1+c1z+c2z
2
+ is an analytic function with positive real part in D then, 
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The result is sharp for the function  

z1

z1
q(z)(or)

z1

z1
q(z)

2

2









  

 

Lemma 8. [8] 

If the function D is in the form   

(z)=c1z+c2z
2
+ zD 

Then, 
2

1
2
12 c1)v(1vcc   

where v is the complex number 

 

Lemma 9. [11] 

Let k [0,) be fixed and qk(z)  in the form (5)then  

qk(z)=1+H1(k)z+H2(k)z
2
+, zD 

and 
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where M1(k) and E(k) are defined in (3) and (4) 

2. Main Results 

Theorem 10: 

A function fA and of the form (1) is in the class kUSq(,A,B,, t), if it satisfies the condition  
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roof. 

Assume (13) is hold, then it suffices to show that  
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When  q1 and  =0  we have, 

 

Corollary 11. 

A function f A and of the form (1) is in the class kUSq(,A,B,t), if it satisfies the condition,  
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When q 1 and  =1 we have, 

 

Corollary 12. 

A function f A and of the form (1) is in the class  kUCq(,A,B,t),  if it satisfies the condition,  
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Theorem 13. 
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Now we prove that  
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Which gives (19).           □ 

 

When q 1and  =0 we have, 

 

Corollary 14. 

A function f A and of the form (1) is in kUSq(,A,B,t),  if,  
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is satisfied. 

 

When q 1 and  =1 we have, 

 

Corollary 15. 

A function f  A and of the form (1) is said to be in the class kUCq(,A,B,t), if,  
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is true. 

 

Theorem 16. 

Let 1 B < A1and t=0, 0 k < be fixed and let f(z) kUSq(,A,B,, t) and is of the form (1) then for a 

complex number  
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and 

P=(1+)[2,q]  Q=(1+[2,q])[3,q] 

 

R= (1)+[2,q]  S=(1)+[3,q] 

and M1(k), E(k) are defined in (3) and (4)  

 

Proof. 

If f(z)  kUSq(,A,B,,t) then it follows that  
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Now by the definition of subordination there exists a function  analytic in D with (0)=0 and  

|(z)|<1 such that 
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Now from lemma 8, equation (23) and equation (24), We have  
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(25) 

which gives 

 
(26) 

Suppose that >1 then using the estimates 1cc 2
12   from lemma 8 and the well known estimate |c1|  1 of 

the Schewarz lemma, we obtain 
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The inequality (27) is our required assertion (20) for >1 on other hand if <2 then (25) gives, 
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(28) 

Applying the estimates |c2|  1|c1|
2
 of lemma 8 and |c1| 1, We have  
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This is last inequality in (20). Finally if 1<<2 then  
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Therefore (25) yields 
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We get the middle inequality in(20). This completes the proof.      □ 

 

Theorem 17. 

Let  k <, 1 B < A  1 and t=0 be fixed and let f(z)  kUSq(,A,B, , t) and is of the form (1). Then for a 

complex number  
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where v is given by (31) 

 

Proof. 

From (25) we have  
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where 
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            (31) 

Applying the lemma 7 on the equation (30), we obtain the required result.  

   □ 
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